融合视觉注意机制的高光谱RX异常检测算法

Hyperspectral RX Anomaly Detection Algorithm with Visual Attention Mechanism

  • 摘要: 视觉注意机制具有快速引导关注到重点区域的特性,将其引入高光谱图像异常检测中具有可行性。本文从采样方式、波段选取、融入局部光谱特征3方面构建更适用于计算高光谱图像显著性的视觉注意机制模型。针对经典的基于高斯统计分布假设的RX异常检测算法在背景参数估计中易受潜在异常干扰的问题,利用视觉显著性结果对原图像进行高斯加权,在加权后图像中进行背景均值与协方差的重新估算,进而使用更精确的背景参数对原图像进行RX异常检测。在5个经典数据上的实验结果表明,本文方法有效地表现了潜在的异常目标,改进的RX异常检测算法具有更高的检测精度与更低的虚警率。

     

    Abstract: A visual attention mechanism (VAM) can quickly highlight region-of-interest targets; therefore, it is reasonable to introduce visual attention into hyperspectral image (HSI) anomaly detection tasks. By adjusting a bottom-up VAM model in three aspects, namely sampling method, band selection, and local spectral features, a more applicable VAM model for calculating the saliency of hyperspectral images was constructed. The resulting VAM is called bottom-up hyperspectral saliency map (BUHS). To solve the problem of background parameter estimation in the RX(Reed-Xiaoli) algorithm, which is susceptible to interference, BUHS was used as a Gaussian weighting parameter for the original image, in which new parameters of the RX anomaly method were calculated. Compared to the traditional RX, the background parameters are more accurate. The experimental results on five HSI datasets show that the proposed method can effectively identify potential anomaly targets and improve the RX algorithm with a higher detection accuracy and lower false alarm rate.

     

/

返回文章
返回