小F数红外光学系统设计

Design of Small F-number Infrared Optical System

  • 摘要: 红外探测器不断朝着高分辨率、小像元的方向发展。要想实现小像元的探测,那就要求红外光学系统要具有更小的F数。所以本文基于对小像元探测的需求,通过采用库克型离轴三反结构,设计出了一款F数接近1的离轴三反红外光学系统。该光学系统的主镜、次镜、三镜均采用偶次非球面,F数为1.3,焦距为60 mm,视场角为1.6°×2.4°,波段为1.1~2.5 μm。该设计的红外光学系统在空间截止频率100线对每毫米处调制传递函数(MTF)都大于0.6,并且弥散斑RMS值远小于探测器的像元尺寸,畸变小于2%,系统设计以及仿真后的结果说明,系统各视场的MTF均接近衍射极限,满足成像质量要求,能够实现小像元探测的需求。

     

    Abstract: Infrared detectors are being developed for high resolution and small pixels. To detect small pixels, an infrared optical system must have a small F-number. Therefore, based on the demand for small-pixel detection, this study designed an off-axis three-reflection infrared optical system with an F-number close to 1 using a Cook-type off-axis three-reflection structure. The primary, secondary, and tertiary mirrors of this optical system were all aspherical, with an F-number of 1.3, focal length of 60 mm, field of view of 1.6°×2.4°, and a wavelength band of 1.1–2.5 μm. The modulation transfer function (MTF) of this infrared optical system design was greater than 0.6 at a spatial cutoff frequency of 100 line pairs per millimeter. The RMS value of the diffuse spot was smaller than the pixel size of the detector, with a distortion of less than 2%. The system design and simulation results indicated that the MTF of each field of view was close to the diffraction limit, meeting both imaging quality and small-pixel detection requirements.

     

/

返回文章
返回