1280×1024碲镉汞中波红外焦平面探测器组件结构热应力分析

Thermal Stress Analysis of 1280×1024 HgCdTe Mid-Wave Infrared Focal Plane Detector Assembly

  • 摘要: 1280×1024碲镉汞中波红外焦平面探测器组件在结构形式上为由1280×1024碲镉汞中波红外焦平面探测器芯片、硅读出电路、引线基板和杜瓦冷头组成的层状材料结构。当探测器从室温制冷至低温工作环境(90 K)时,各结构层间由于材料热力学参数的差异会产生一定的热失配应力,导致探测器性能降低甚至破裂失效。为了解决1280×1024碲镉汞中波红外焦平面探测器组件低温可靠性问题,使用ANSYS WORKBENCH软件的多场耦合分析模块建立了该中波组件结构的有限元分析模型,分析了杜瓦封装过程中探测器热应力变化情况,通过合理选择基板和冷头的材料,并对基板厚度进行结构尺寸优化,在冷头为Invar,引线基板厚度大于2 mm的Al2O3陶瓷材料体系下,获得了工程项目应用的1280×1024碲镉汞中波红外焦平面探测器组件封装结构,组件开关机次数达到300次以上。

     

    Abstract: The 1280×1024 mercury cadmium telluride (MCT) midwave infrared (MWIR) focal plane array (FPA) detector module employs a layered structure comprising an MCT detector chip, silicon readout integrated circuit (ROIC), lead wire substrate, and Dewar cold finger. When the detector is cooled to below room temperature (90 K), thermal mismatch stress develops at the material interfaces because of differences in the thermomechanical parameters, potentially causing performance degradation or structural failure. To address the low-temperature reliability issues in the 1280×1024 HgCdTe MWIR focal plane array detector assembly, a finite element model of the assembly structure was developed using the multiphysics coupling analysis module in ANSYS WORKBENCH. The model was employed to analyze the variation in thermal stress within the detector during the Dewar packaging process. By appropriately selecting the materials for the substrate and cold head and optimizing the structural dimensions, a packaging configuration suitable for engineering applications was achieved. Under the conditions of an Invar cold head and an Al2O3 ceramic substrate with a thickness exceeding 2 mm, the 1280×1024 HgCdTe MWIR focal plane detector assembly demonstrated a thermal cycling of over 300 cycles.

     

/

返回文章
返回