Research Progress of Quantum Dots Synthesis and Their Photoelectric Functional Films
-
摘要: 量子点(quantum dots,QDs),也被称为半导体纳米晶体,得益于其廉价的制造成本和独特的光学物理学特性,已经广泛应用于光电探测器和太阳能电池的设计和开发。而量子点的合成则是制备光电探测器和太阳能电池的重要组成部分之一。本文对几种不同的量子点合成技术进行了概述,对国内外不同的基于量子点的光电探测器和太阳能电池进行了归纳和总结,并比较了不同种量子点薄膜的优缺点。最后,对量子点薄膜的发展进行了展望。Abstract: Quantum dots (QDs), which are also known as semiconductor nanocrystals, have been widely applied in the design and development of photoelectric detectors and solar cells because of their low manufacturing cost and unique optical properties. The synthesis of QDs is an important component in the preparation of photodetectors and solar cells. In this review, several different QD synthesis technologies, various QD-based photodetectors and solar cells are summarized, and the advantages and disadvantages of different types of QD films are compared. Lastly, we investigated the development of QD films.
-
Keywords:
- quantum dots /
- quantum dots film /
- photodetectors /
- solar cells
-
0. 引言
快速反射镜(fast steering mirror, FSM)是一种通过控制反射镜的偏转角度调整光束传播方向,实现收发两端的光束精确对准的装置。由于这类装置具有响应速度快、控制精度高等优点,快速反射镜已经被广泛应用于自由空间通信、扫描共焦显微镜、大型天文望远镜等光学系统中[1-3],成为光束指向控制系统中应用最广泛的核心器件。
快速反射镜的机械结构主要由驱动元件、支撑结构和负载组成[4]。驱动元件包括音圈电机(voice coil motor, VCM)和压电驱动器(piezoelectric actuators, PEAs),由音圈电机驱动的快速反射镜具有高驱动行程、高加速度等优势,然而音圈电机输出驱动力有限,因此为了保证足够的偏摆范围,快速反射镜的支撑结构偏摆刚度不能太大,这就造成其谐振频率相对较低[5]。例如,2020年Tadahiko Shinshi等人提出了一种由音圈电机驱动的快速反射镜,其尖端倾斜范围可达±20 mrad,轴向带宽仅为200 Hz[6]。
压电驱动器具有高驱动力、高频响、高分辨率等优势,然而受到输出位移量小(仅为驱动器自身长度的0.1%~0.15%)以及不能承受侧向或拉伸载荷等缺点的限制[7]。而快速反射镜的支撑结构——柔性机构具有无需装配、无摩擦、响应速度快等优点,将柔性机构作为预紧和位移放大机构与压电驱动器组成压电驱动快速反射镜[8-9]。此类系统兼具压电陶瓷与柔性机构的优点,因而被广泛地应用于精确激光束控制等超精密系统。2010年向思桦等人采用单级桥式放大构型设计的快速反射镜具有较高一阶固有频率,但放大比较小,导致快速反射镜偏转角度较小[10]。2015年袁刚等人采用单级桥式放大构型设计的快速反射镜具有较大的偏转角,然而由于该柔性铰链的刚度较小,导致构型固有频率较低,仅为180.4 Hz[11]。2018年邵恕宝等人提出的压电驱动快反镜采用一级杆式构型可实现两轴±7 mrad的倾斜范围,同时两轴带宽高于810 Hz[12]。2019年Kim等人和2021年谢永等人均采用两级杠杆放大机构,保证了构型有较大的放大比,但其频响较低[13-14]。
现有快速反射镜柔性机构通常采用多级单一放大构型以增加放大比。然而,由于缺乏针对不同级数、不同构型之间性能特征的定量分析,设计过程缺乏选型依据[15-16],导致现有快速反射镜普遍存在偏转范围小、扫描频率低的共性问题。由于快速反射镜在运动时,会受到一些来自平台或者外界环境的干扰,导致快速反射镜的视轴稳定性下降,因此在控制快速反射镜运动需要能够对多源干扰准确估计和有效抑制的控制方法[17-18]。同时,压电陶瓷存在迟滞、蠕变特性,这种由驱动元件材料引起的非线性特性增加了控制方法设计的复杂程度[14]。
本研究针对柔性机构构型级数与放大比之间的关系开展了定量分析,得出了嵌套级数的选择依据。针对不同构型方案的固有频率和放大比进行仿真分析,得出了三级混合构型的设计方案。开展了柔性机构离散化处理,构建了柔性机构的通用动力刚度模型,得出柔性机构结构参数与快速反射镜偏转角度的映射关系。在此基础上,对快速反射镜柔性机构关键尺寸参数进行优化,以快速反射镜偏转角度最大化为优化目标,得到优化参数与偏转角度及固有频率的关系。为快速反射镜的设计以及柔性铰链等单元的参数优化提供了理论依据。与国内外同类研究相比,该机构可以在保证较高一阶固有频率的基础上实现100 mrad机械偏转角度。
1. 压电驱动快速反射镜的工作原理
快速反射镜通过PEAs驱动柔性机构引导平面反射镜快速摆动实现光束指向的精准调控,其工作原理如图 1所示。图 1(b)表示在驱动力±Fx和±Fy等距分布于反射镜底部,图 1(a)表示在驱动力作用下反射镜偏转α(即机械偏转角度),反射光线则由l1偏转至l2,偏转角为β(即光学偏转角度)。
2. 三级混合柔性机构构型设计
对快速反射镜输出偏转角和带宽影响最大的部分是支撑结构(柔性机构),其主要常见材料有钛合金(TC4)、镁合金(AZ91)、铝合金(AL7075)、低锰弹簧钢(65Mn)等。本文以上述材料为选材目标,以一级桥式放大机构为例,使用ANSYS Workbench软件对构型进行分析,设置柔性机构材料如表 1所示,逐一比较快速反射镜采用这些材料时的各项参数。
表 1 柔性机构材料各项参数Table 1. Material parameters of flexible mechanismMaterial Elastic modulus/GPa Ultimate strength /MPa Yield limit /MPa Magnificationratio (R) Natural frequency/Hz Titanium alloy(TC4) 117 902 824 1.943 739.66 Magnesium alloy(AZ91) 45 230 160 1.943 810.62 Aluminium alloy(AL7075) 71 572 503 1.944 813.73 Low manganese spring steel(65Mn) 197 980 785 1.945 827.33 如表 1所示,具有最大放大比的材料是低锰弹簧钢(65Mn),但是低锰弹簧钢加工前需要热处理,同时该材料在淬火后容易产生裂纹;钛合金(TC4)具有较大弹性模量,但是分析结果表明其固有频率较低;镁合金(AZ91)的弹性模量、强度极限和屈服极限这3项参数较低,不适合本文的柔性放大机构;与其它材料相比,铝合金具有高放大比、高带宽、高弹性模量和无需热处理的优势,因此本文采用铝合金(AL7075)加工快速反射镜支撑结构。
柔性铰链主要分为杆式构型和桥式构型,其中杆式构型的放大比受杠杆尺寸影响较大,单级杆式构型在保证其放大比前提下难以兼顾杠杆尺寸。与杠杆机构相比,桥式机构具有结构紧凑且无寄生位移的优势。由于单级构型可提供的放大比有限,在快速反射镜柔性机构设计过程中通常采用多级构型。然而,过多放大构型的多级嵌套组合会导致结构尺寸和输入刚度的增大,因此在设计过程中需要首先考虑嵌套级数和构型方式。
首先,开展柔性机构的级数分析。为保证结构紧凑,初步设定桥式构型与杆式构型的每一级构型的主要尺寸如表 2所示,其构型如图 2所示。
表 2 各级构型的主要参数Table 2. The main parameters of each configurationParameter Lever type configuration Bridge type configuration θ/° - 13.5 L/mm 15 18 H/mm 5 5 t/mm 0.8 0.8 h/mm 2.5 - PEAs驱动多级柔性机构过程中,动力源于PEAs逆压电作用产生的驱动力,在该驱动力作用下第一级机构(由PEAs直接驱动的柔性铰链)发生弹性形变输出位移,该位移使后一级机构产生弹性形变并逐级向后驱动。可以发现,前一级机构的输出力是后一级机构的驱动力,而前一级机构的输出位移受到后一级机构的阻滞。因此,多级柔性机构是单向耦合的。构建柔性机构阻滞模型需要完成精确的力学建模和复杂的积分运算,工作量巨大。因此在确定柔性机构级数时通常依赖于设计者的经验,缺乏级数与柔性机构输出性能之间的定量分析。如图 3所示,本文基于有限元理论,针对桥式构型和杆式构型级数与柔性机构输出放大比之间关系分别开展了定量分析。
如图 3所示,一级桥式构型放大比与一级杆式构型放大比较为接近(分别为3.9、3.5);在两级构型中,桥式构型放大比到达峰值(8.6),杆式构型放大比(11.0)优于桥式构型。在三级构型中,桥式构型放大比产生较大衰减,杆式构型放大比到达峰值(12.3);在四级及以上构型中,桥式构型和杆式构型放大比均出现持续衰减。因此,采用柔性机构嵌套级数为三级。
针对三级柔性机构四种构型方案的固有频率和放大比进行分析,分析结果如图 4所示。图 4(a)为三级杆式构型,该结构具有较高的固有频率和放大比。然而,纯杆式构型很难保证柔性机构的紧凑性。图 4(b)为一级桥式构型与两级杆式构型组合,其固有频率和放大比均低于方案(a)。图 4(c)为两级桥式构型与一级杆式构型相结合的设计方案,该方案为压电驱动器预留足够的安装空间且具有20.1倍的位移放大比和较高的一阶固有频率。图 4(d)为三级桥式构型,其一阶固有频率和放大比都很低。因此,本文采用了两级桥式构型与一级杆式构型相结合的设计方案。
快速反射镜整体机构如图 5所示,在两级桥式放大机构之间放置PEAs,由PEAs直接输出位移,两级桥式放大构型与杆式构型相连,经杆式机构放大,在光学反射镜底部实现输出。由于快速反射镜驱动组件在装置底部通过柔性铰链相连,所以当快速反射镜发生偏转时,可能存在交叉耦合现象。采取如图 5所示沿圆周方向均布柔性机构的方式减小交叉耦合现象。
3. 快速反射镜柔性机构建模及动力学分析
如图 5所示,三级混合柔性机构通过柔性直梁与反射镜底座相连,组成一个多自由度复杂机构。针对这类复杂机构的动态响应分析,首先需要对机构进行离散化处理,建立每个柔性铰链和刚体的动力学模型,最后建立整个机构的动力学模型。
将构型离散化后可知构型由柔性直梁、集中质量和刚体组成,进一步将构型的柔性直梁进行顺序编号从(1)~(44),固定端编号为(0),而所有的柔性直梁是由1到25个节点连接,其中节点3、4、9、10、15、16、21和22为质量为m1的集中质量,节点6、12、18和24为质量为m2的刚体,节点25为质量为m3的刚体。如图 6所示,将第一组柔性放大机构与输出平台离散化为柔性直梁、刚体和集中质量,其余3组柔性放大机构离散化类同于第一组。
3.1 柔性直梁动力学分析
对柔性机构的动态分析中首先需要对柔性铰链进行分析,而本文构型所包含的柔性铰链均为柔性直梁。如图 7所示,柔性直梁的两个节点j和k包含6个自由度,分别是$ x_j^{\rm{e}}(\omega ) = \left[ {{u_j};{v_j};{w_j};{\alpha _j};} \right.{\beta _j};\left. {{\gamma _j}} \right] $;和$ x_k^{\text{e}}(\omega ) = \left[ {{u_k};{v_k};{w_k};{\alpha _k};{\beta _k};{\gamma _k}} \right] $,$ \left[ {{u_j};} \right.{v_j};\left. {{w_j}} \right] $和$\left[ {{u_k};{v_k};{w_k}} \right]$表示沿坐标轴方向的位移,$\left[ {{\alpha _j};} \right.{\beta _j};\left. {{\gamma _j}} \right]$和$\left[ {{\alpha _k};{\beta _k};{\gamma _k}} \right]$表示垂直于坐标轴方向的转角。
基于矩阵位移法,柔性单元的节点力$F_j^{\text{e}}(\omega ) = \left[ {{F_{xj}};{F_{yj}};{F_{zj}};{M_{xj}};{M_{yj}};{M_{zj}}} \right] \text{,}F_k^{\text{e}}(\omega ) = \left[ {{F_{xk}};{F_{yk}};} \right.{F_{kj}};{M_{kj}};{M_{kj}};$$\left. {{M_{kj}}} \right]$和节点位移$x_j^{\text{e}}(\omega ), x_k^{\text{e}}(\omega )$满足广义胡克定律,即:
$$ \left\{ {\begin{array}{*{20}{c}} {F_j^{\text{e}}\left( \omega \right)} \\ {F_k^{\text{e}}\left( \omega \right)} \end{array}} \right\} = {{\boldsymbol{D}}^{\text{e}}}\left( \omega \right) \cdot \left\{ {\begin{array}{*{20}{c}} {x_j^{\text{e}}\left( \omega \right)} \\ {x_k^{\text{e}}\left( \omega \right)} \end{array}} \right\} $$ (1) 式(1)中:De(ω)为一个柔性单元的动力刚度矩阵。
进一步分析该柔性单元的动力刚度矩阵,即:
$$ {{\boldsymbol{D}}^{\text{e}}}\left( \omega \right) = \left[ {\begin{array}{*{20}{c}} {{d_1}}&0&0&0&0&0&{{d_5}}&0&0&0&0&0 \\ {}&{{d_2}\left( {{I_z}} \right)}&0&0&0&{{d_3}\left( {{I_z}} \right)}&0&{{d_6}\left( {{I_z}} \right)}&0&0&0&{{d_7}\left( {{I_z}} \right)} \\ {}&{}&{{d_2}\left( {{I_y}} \right)}&0&{ - {d_3}\left( {{I_y}} \right)}&0&0&0&{{d_6}\left( {{I_y}} \right)}&0&{ - {d_7}\left( {{I_y}} \right)}&0 \\ {}&{}&{}&{{d_9}}&0&0&0&0&0&{{d_{10}}}&0&0 \\ {}&{}&{}&{}&{{d_4}\left( {{I_y}} \right)}&0&0&0&{{d_7}\left( {{I_y}} \right)}&0&{{d_8}\left( {{I_y}} \right)}&0 \\ {}&{}&{}&{}&{}&{{d_4}\left( {{I_z}} \right)}&0&{ - {d_7}\left( {{I_z}} \right)}&0&0&0&{{d_8}\left( {{I_z}} \right)} \\ {}&{}&{}&{}&{}&{}&{{d_1}}&0&0&0&0&0 \\ {}&{}&{}&{}&{}&{}&{}&{{d_2}\left( {{I_z}} \right)}&0&0&0&{ - {d_3}\left( {{I_z}} \right)} \\ {}&{}&{}&{}&{{\rm{sym}}}&{}&{}&{}&{{d_2}\left( {{I_y}} \right)}&0&{{d_3}\left( {{I_y}} \right)}&0 \\ {}&{}&{}&{}&{}&{}&{}&{}&{}&{{d_9}}&0&0 \\ {}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{{d_4}\left( {{I_y}} \right)}&0 \\ {}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{{d_4}\left( {{I_z}} \right)} \end{array}} \right] $$ (2) 式(2)中:dq(q=1, 2, …, 10)是De(ω)的系数;dq(Iy or Iz)表示该系数是和惯性矩相对于y轴或z轴的惯性矩(Iy=(t3h)/12或Iz=(t3h)/12)相关的函数。对于dq(q=1, 2, …, 10)选取二阶泰勒展开式计算,即:
$$ {d_1}{\text{ = }}\frac{{EA}}{l}\left( {1 - \frac{1}{3}{\alpha ^2} - \frac{1}{{45}}{\alpha ^4} - \cdots } \right) $$ (3) $$ {d_2}{\text{ = }}\frac{{EI}}{{{l^3}}}\left( {12 - \frac{{13}}{{35}}{\beta ^4} - \frac{{59}}{{161700}}{\beta ^8} - \cdots } \right) $$ (4) $$ {d_3}{\text{ = }}\frac{{EI}}{{{l^2}}}\left( {6 - \frac{{11}}{{210}}{\beta ^4} - \frac{{223}}{{2910600}}{\beta ^8} - \cdots } \right) $$ (5) $$ {d_4}{\text{ = }}\frac{{EI}}{l}\left( {4 - \frac{1}{{105}}{\beta ^4} - \frac{{71}}{{4365900}}{\beta ^8} - \cdots } \right) $$ (6) $$ {d_5}{\text{ = }} - \frac{{EA}}{l}\left( {1 + \frac{1}{6}{\alpha ^2} + \frac{7}{{360}}{\alpha ^4} + \cdots } \right) $$ (7) $$ {d_6}{\text{ = }} - \frac{{EI}}{{{l^3}}}\left( {12 + \frac{9}{{70}}{\beta ^4} + \frac{{1279}}{{3880800}}{\beta ^8} + \cdots } \right) $$ (8) $$ {d_7}{\text{ = }}\frac{{EI}}{{{l^2}}}\left( {6 + \frac{{13}}{{420}}{\beta ^4} + \frac{{1681}}{{23284800}} + \cdots } \right) $$ (9) $$ {d_8}{\text{ = }}\frac{{EI}}{l}\left( {2 + \frac{1}{{140}}{\beta ^4} + \frac{{1097}}{{69854400}}{\beta ^8} + \cdots } \right) $$ (10) $$ {d_9}{\text{ = }}\frac{{G{I_x}}}{l}\left( {1 - \frac{1}{3}{\gamma ^2} - \frac{1}{{45}}{\gamma ^4} - \cdots } \right) $$ (11) $$ {d_{10}}{\text{ = }} - \frac{{G{I_x}}}{l}\left( {1 + \frac{1}{6}{\gamma ^2} + \frac{7}{{360}}{\gamma ^4} + \cdots } \right) $$ (12) 式(3)~式(12)中:α2=ω2l2ρ/E;β4=ω2l4ρA/EI;γ2=ω2l2ρ/G。其中E为杨氏模量;G为剪切模量;ρ表示密度;A为横截面积;ω表示频率。
式(2)是在其局部坐标系下的动力刚度矩阵,但在动力学分析中需要将其转换到参考坐标系中。对于第i(i=1, 2, …, 44)个柔性直梁其坐标变换分析如下:
$$ {{\boldsymbol{D}}_i}\left( \omega \right) = {\boldsymbol{R}}_i^{\rm{T}} \cdot {{\boldsymbol{D}}^{\text{e}}}\left( \omega \right) \cdot {{\boldsymbol{R}}_i} $$ (13) $$ {{\boldsymbol{R}}_i} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{\lambda}} _i}}&{{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{O}}_{3 \times 3}}} \\ {{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{\lambda}} _i}}&{{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{O}}_{3 \times 3}}} \\ {{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{\lambda}} _i}}&{{{\boldsymbol{O}}_{3 \times 3}}} \\ {{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{\lambda}} _i}} \end{array}} \right] $$ (14) $$ {{\boldsymbol{\lambda}} _i} = \left[ {\begin{array}{*{20}{c}} {\cos \left( {{x_i}, x} \right)}&{\cos \left( {{x_i}, y} \right)}&{\cos \left( {{x_i}, z} \right)} \\ {\cos \left( {{y_i}, x} \right)}&{\cos \left( {{y_i}, y} \right)}&{\cos \left( {{y_i}, z} \right)} \\ {\cos \left( {{z_i}, x} \right)}&{\cos \left( {{z_i}, y} \right)}&{\cos \left( {{z_i}, z} \right)} \end{array}} \right] $$ (15) 式(14)中:O3×3是维度为3×3的0矩阵。式(15)矩阵中每一项为第i个柔性直梁局部坐标系与参考坐标系各坐标轴之间的余弦值。
第i个柔性直梁经过坐标变换,在参考坐标系中的力与位移的关系可表示为式(16):
$$ \left\{ {\begin{array}{*{20}{c}} {{F_{i, j}}} \\ {{F_{i, k}}} \end{array}} \right\} = {{\boldsymbol{D}}_i} \cdot \left\{ {\begin{array}{*{20}{c}} {{x_{i, j}}} \\ {{x_{i, k}}} \end{array}} \right\} = \left[ {\begin{array}{*{20}{c}} {{k_{i, 1}}}&{{k_{i, 2}}} \\ {{k_{i, 3}}}&{{k_{i, 4}}} \end{array}} \right] \cdot \left\{ {\begin{array}{*{20}{c}} {{x_{i, j}}} \\ {{x_{i, k}}} \end{array}} \right\} $$ (16) 式中:$ \left\{ {{F_{i, j}}, {F_{i, k}}} \right\} $和$ \left\{ {{x_{i, j}}, {x_{i, k}}} \right\} $是参考坐标系下第i个柔性直梁的节点力和节点位移。ki, 1、ki, 2、ki, 3和ki, 4是动力刚度矩阵Di的子矩阵。
3.2 刚性体和集中质量动力学分析
刚性体(输出平台和杠杆放大机构的刚性梁)和集中质量(两级桥式放大构型的连接部分)也是分析构型动力学的重要组成单元,对于第n(n=3、4、6、9、10、12、15、16、18、21、22、24、25)个节点为刚体或集中质量的分析如式(17)、(18)和(19)所示:
$$ {{\boldsymbol{M}}_n}\left( \omega \right) = - {\omega ^2} \cdot \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{M}}_{3 \times 3}}}&{{{\boldsymbol{O}}_{3 \times 3}}} \\ {{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{J}}_{n, 3 \times 3}}} \end{array}} \right] $$ (17) $$ {{\boldsymbol{M}}_{3 \times 3}} = \left[ {\begin{array}{*{20}{c}} m&0&0 \\ 0&m&0 \\ 0&0&m \end{array}} \right] $$ (18) $$ {{\boldsymbol{J}}_{n, 3 \times 3}} = {\boldsymbol{\lambda}} _n^{\rm{T}} \cdot \left[ {\begin{array}{*{20}{c}} {{J_x}}&0&0 \\ 0&{{J_y}}&0 \\ 0&0&{{J_z}} \end{array}} \right] \cdot {{\boldsymbol{\lambda}} _n} $$ (19) 式(17)、(18)和(19)中:Mn(ω)表示第n个节点为刚性体或集中质量的动力刚度矩阵;m是该单元的质量,Jx、Jy、Jz是该单元相对于质心的惯性矩。式(19)中坐标变换矩阵λn与式(15)λi计算方法一致。
3.3 柔性机构的动态响应模型
已完成在参考坐标系下所有柔性直梁、集中质量和刚体的动力刚度矩阵,进一步建立所有节点力的平衡方程组,表示为节点位移的形式,如式(20)所示:
$$ \left\{ {\begin{array}{*{20}{c}} { - {f_{{\rm{in}}, 1}} = \left( {{k_{1, 1}} + {k_{2, 1}}} \right) \cdot {x_1} + {k_{1, 2}} \cdot {x_3} + {k_{2, 2}} \cdot {x_4}} \\ {{f_{{\rm{in}}, 1}} = \left( {{k_{3, 4}} + {k_{4, 4}}} \right) \cdot {x_2} + {k_{3, 3}} \cdot {x_3} + {k_{4, 3}} \cdot {x_4}} \\ {0 = {k_{1, 3}} \cdot {x_1} + {k_{3, 2}} \cdot {x_2} + \left( {{k_{1, 4}} + {k_{3, 1}} + {k_{5, 1}} + {k_{8, 1}} + {M_3}} \right) \cdot {x_3} + {k_{5, 2}} \cdot {x_5}} \\ {0 = {k_{2, 3}} \cdot {x_1} + {k_{4, 2}} \cdot {x_2} + \left( {{k_{2, 4}} + {k_{4, 1}} + {k_{6, 4}} + {k_{7, 4}} + {M_4}} \right) \cdot {x_4} + {k_{6, 3}} \cdot {x_5}} \\ {0 = {k_{5, 3}} \cdot {x_3} + {k_{6, 2}} \cdot {x_4} + \left( {{k_{5, 4}} + {k_{6, 1}} + {k_{9, 1}}} \right) \cdot {x_5} + {k_{9, 2}} \cdot {x_6}} \\ {0 = {k_{9, 3}} \cdot {x_5} + \left( {{k_{9, 4}} + {k_{10, 4}} + {k_{41, 1}} + {M_6}} \right) \cdot {x_6} + {k_{41, 2}} \cdot {x_{25}}} \\ { \cdots \cdots } \\ {{f_{\rm{o}}}\left( \omega \right) = {k_{41, 3}} \cdot {x_6} + {k_{42, 3}} \cdot {x_{12}} + {k_{43, 3}} \cdot {x_{18}} + {k_{44, 3}} \cdot {x_{24}} + \left( {{k_{41, 4}} + {k_{42, 4}} + {k_{43, 4}} + {k_{44, 4}}} \right) \cdot {x_{25}}} \end{array}} \right. $$ (20) 由于构型中压电陶瓷驱动器输入力均沿x轴方向,所以式(20)中$ {f_{in, s}}\left( \omega \right) = \left[ {{f_{in, s}};0;0;0;0;0} \right] $(s=1, 2, 3, 4), Mn已由式(18)求出,$ \left\{ {{F_{i, j}}, {F_{i, k}}} \right\} $已由式(16)求出。fo(ω)是输出平台的虚拟力,只有在求输出刚度时不为0。
柔性机构的通用动力刚度模型统一表示为:
$$ \left\{ {F\left( \omega \right)} \right\} = \left[ {{\boldsymbol{D}}\left( \omega \right)} \right] \cdot \left\{ {X\left( \omega \right)} \right\} $$ (21) 进一步将式(21)表示为柔性机构的通用动力刚度模型,即式(22):
$$ \left\{ {\begin{array}{*{20}{c}} { - {f_{in, 1}}} \\ {{f_{in, 1}}} \\ 0 \\ \vdots \\ {{f_{\rm{o}}}\left( \omega \right)} \end{array}} \right\} = \left[ {\begin{array}{*{20}{c}} {{k_{1, 1}} + {k_{2, 1}}}&0&{{k_{1, 2}}}&{{k_{2, 2}}}&0& \cdots &0 \\ 0&{{k_{3, 4}} + {k_{4, 4}}}&{{k_{3, 3}}}&{{k_{4, 3}}}&0& \cdots &0 \\ {{k_{1, 3}}}&{{k_{3, 2}}}&{{k_{1, 4}} + {k_{3, 1}} + {k_{5, 1}} + {k_{8, 1}} + {M_3}}&0&{{k_{5, 2}}}& \cdots &0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0&0&0&0&0& \ldots &{{k_{41, 4}} + {k_{42, 4}} + {k_{43, 4}} + {k_{44, 4}}} \end{array}} \right] \cdot \\ \left\{ {\begin{array}{*{20}{c}} {{x_1}} \\ {{x_2}} \\ {{x_3}} \\ \vdots \\ {{x_{25}}} \end{array}} \right\} $$ (22) 由式(22)可知输入$ \left\{ {F\left( \omega \right)} \right\} $时,输出位移为$ \left\{ {X\left( \omega \right)} \right\} $,$ \left\{ {X\left( \omega \right)} \right\} $包括输出平台的输出位移$ {x_{25}} = \left[ {{u_{25}};{v_{25}};{w_{25}};{\alpha _{25}};{\beta _{25}};{\gamma _{25}}} \right] $。构型固有频率为机构整体动力刚度矩阵$ \left[ {{\boldsymbol{D}}\left( \omega \right)} \right] $行列式为0的根。如图 8所示,纵坐标表示动力刚度矩阵$ \left[ {{\boldsymbol{D}}\left( \omega \right)} \right] $参数,横坐标表示柔性机构固有频率。当$ \left[ {{\boldsymbol{D}}\left( \omega \right)} \right] = 0 $时,一阶固有频率为309 Hz,与有限元分析结果315.49 Hz的误差为1.9%,二阶固有频率为322 Hz,与有限元分析结果315.73 Hz的误差为2.22%。
3.4 快速反射镜偏转角度
由于输出平台沿x轴、y轴方向位移和绕z轴偏转角可忽略不计,所以输出平台偏转角只与输出平台绕x轴的偏转角α25,绕y轴的偏转角β25,沿z轴的位移ω25相关,由此可以得到,偏转后输出平台平面上有三点p1=(0; cosα25; 0; sinα25+w25),p2=(cosβ25; 0; sinβ25+w25),p3=(0; 0; w25),则偏转后平台的一个法向量$ \overrightarrow {{{\boldsymbol{n}}_1}} $为:
$$ \overrightarrow {{{\boldsymbol{n}}_1}} = {\left[ \begin{gathered} - \cos {\alpha _{25}} \cdot \sin {\beta _{25}} \hfill \\ - \cos {\beta _{25}} \cdot \sin {\alpha _{25}} \hfill \\ \cos {\beta _{25}} \cdot \left( {\sin {\alpha _{25}} + {w_{25}}} \right) \hfill \\ \end{gathered} \right]^{\rm T}} $$ (23) 若平台未偏转,只沿z轴位移w25,则平台的一个法向量为$ \overrightarrow {{{\boldsymbol{n}}_2}} = \left[ {0, 0, c} \right] $,c是常数,进一步可得出偏转后平台偏转角αp为:
$$ {\alpha _p} = \arccos \frac{{\left| {{{\vec {\boldsymbol{n}}}_1} \cdot {{\vec {\boldsymbol{n}}}_2}} \right|}}{{\left| {{{\vec {\boldsymbol{n}}}_1}} \right| \cdot \left| {{{\vec {\boldsymbol{n}}}_2}} \right|}} $$ (24) 4. 三级混合柔性机构关键尺寸参数优化设计
在此基础上对快速反射镜柔性机构关键尺寸参数进行优化,选择桥式放大机构柔性臂的夹角θ,长度l,宽度t和高度h为待优化参数,以快速反射镜偏转角度最大化为优化目标,得到优化参数与偏转角度和固有频率的关系如图 9~图 12所示。
如图 9所示,柔性臂的夹角变化范围为11°~25°,其他参数固定不变。红色曲线表示柔性臂夹角与快速反射镜偏转角之间的关系,随着柔性臂夹角增加,快速反射镜偏转角呈现先增后减趋势,当夹角θ=18°时,快速反射镜偏转角度到达最大值。黑色曲线表示柔性臂夹角与柔性机构固有频率之间的关系。随着柔性臂夹角增加,固有频率呈现先减后增趋势,当夹角θ=20°时,固有频率到达峰值最小值。
如图 10~图 12所示,分别对柔性臂长度l,宽度t和高度h与快速反射镜偏转角之间的关系进行分析。可以发现,随着控制变量参数值增加,快速反射镜偏转角都呈现出先增后减的趋势。结合上述分析,选取参数应靠近最佳参数,同时考虑到结构的固有频率ω不宜过低、结构紧凑等因素,本文最终选取优化结果为:θ=18°、l=20 mm、t=0.9 mm、h=6.5 mm、ω=336 Hz、αp=50 mrad。
对快速反射镜进行仿真分析,设PEAs输出最大位移为16 μm,则柔性机构位移仿真结果如图 13所示,根据输出位移最大值,可以求出最大偏转角αp为100.8 mrad。模态仿真分析如图 14所示,一阶固有频率为336.4 Hz,二阶固有频率为336.63 Hz。
如表 3所示,将国内外同类研究与本研究成果进行对比可知,本文设计的压电驱动快速反射镜具有结构紧凑、偏转角度大的优势。
表 3 快速反射镜关键参数对比Table 3. Comparison of key parameters of fast steering mirrorReference Piezoelectric actuator length /mm Number of deflection degrees of freedom Mechanical deflection range around x axis/mrad Mechanical deflection range around y axis /mrad First natural frequency /Hz Ref. [10] - 1 - 24 1872 Ref. [11] - 1 - 52.3 180 Ref. [16] - 2 4.8 4.8 6700 Ref. [13] - 2 21 21 349 Ref. [14] 72 2 52.93 55.41 105.45 This paper 36 2 100 100 336 5. 总结与展望
本文针对柔性机构构型级数与放大比之间的关系开展了定量分析,得出了嵌套级数的选择依据。针对不同构型方案的固有频率和放大比进行仿真分析,得出了三级混合构型的设计方案。进一步将整体构型离散化为柔性铰链、刚性体和集中质量等基本单元,并计算各单元在参考坐标系中的刚度矩阵。结合矩阵位移法,建立了整个柔性机构的动态响应模型,为柔性铰链、刚性体等单元的参数优化提供了理论依据。最后,对柔性机构开展了模态分析,验证了动态响应模型的能够较为准确地描述快速反射镜的动态行为。与国内外同类研究相比,该机构可以在保证较高一阶固有频率的基础上实现100 mrad机械偏转角度。本文侧重于大转角快速反射镜柔性机构的优化设计与动态分析,针对压电驱动快速反射镜的控制方法研究将在后续工作中开展。
-
图 1 胶体量子点的吸收光谱及不同类型的量子点材料: (a) 不同尺寸 PbS CQDs的太阳光谱及光吸收示意图[4];(b) 用于光电探测的不同类型的CQDs[29]
Figure 1. Absorption spectrum of CQDs and different types of CQDs materials: (a) Solar spectrum and schematic diagram of the light absorption of PbS CQDs of varying sizes[4]; (b) Different types of CQDs which applied in photodetection[29]
图 2 反相微乳液法制备纳米晶体及其性质: (a) W/O型微乳液体法示意图;(b)和(c)不同煅烧温度下氧化锆纳米颗粒的TEM图像[36];(d)含水氧化锆颗粒的TEM图像[37];(e)和(f)具有不同水与活性剂摩尔比的A12O3纳米颗粒的TEM图像[38];(g) PbS CQDs的TEM图像[39];(h) PbS CQDs的粒径分布直方图[39];(i) PbS CQDs的XPS图谱[39]
Figure 2. Preparation of nanocrystals by reverse phase microemulsion method and their properties: (a) Schematic diagram of W/O microemulsion method; (b) and (c) TEM images of zirconia nanoparticles calcined at 650℃ and 750℃ for 1 h[36]; (d) TEM image of hydrous-zirconia nanoparticles[37]; TEM images of Al2O3nanoparticles with different mole ratios of water to surfactant: (e) ωo=10[38], (f) ωo=15[38]; (g) TEM image of PbS CQDs[39]; (h) Histogram of particle size distribution of PbS CQDs[39]; (i) XPS pattern of the PbS CQDs[39]
图 3 正相微乳液法制备纳米晶体及其性质: (a) O/W型微乳液体法示意图;(b) Ag2Se纳米颗粒的TEM图像[42];(c) Ag2Se纳米颗粒的EDs图谱[42];(d) Ag2Se纳米颗粒的XRD图谱[42];(e) CoCrFeO4纳米颗粒的TEM图像[43];(f) CoCrFeO4纳米颗粒的XRD图谱[43]
Figure 3. Nanocrystals prepared by normal phase microemulsion method and their properties: (a) Schematic diagram of O/W microemulsion method; (b) TEM image of Ag2Se nanoparticles[42]; (c) EDs analyses of Ag2Se nanoparticles[42]; (d) XRD pattern of Ag2Se nanoparticles[42]; (e) TEM micrograph of CoCrFeO4nanoparticles with an average size of ~6nm[43]; (f) XRD pattern of 11-nm CoCrFeO4nanoparticles[43]
图 4 热注射法制备纳米晶体及其性质: (a) 热注射法合成CQDs技术示意图[46];(b) Cu2FeSnS4纳米晶体的低分辨率TEM图像[47];(c)和(d) ZnFe2O4纳米颗粒的TEM图像[48];(e)和(f) CuSbS2纳米颗粒的TEM图像[49];(g)-(i)不同升温速率下完全生长的钴纳米颗粒的TEM图像[50]
Figure 4. Preparation of nanocrystals by thermal injection and their properties: (a) Schematic representation of the hot-injection CQDs synthesis technique[46]; (b) Low resolution TEM image of Cu2FeSnS4nanocrystals[47]; (c) and (d) TEM images of ZnFe2O4nano-particles[48]; (e) and (f) TEM images of CuSbS2nanoparticles[49]; (g)-(i) TEM images of full-grown Co nanoparticles with different temperature recovery rate (HI2: rapid temperature recovery, HI3: medium-rate recovery, HI4: slow recovery)[50]
图 5 量子点红外光电探测器及其性能: (a) HgTe CQDs光电探测器阵列[51];(b) 不同尺寸HgTe CQDs的红外吸光度[51];(c) HgSe CQDs红外光电探测器结构设计图[52];(d) 不同尺寸HgSe CQDs的红外吸光度[52];(e) Si/PbS CQDs光电探测器结构示意图[53];(f)和(g) Si/PbS异质结的能带示意图[53];(h) PbS CQDs光电探测器的响应率曲线图[54];(i) PbS CQDs光电探测器的探测率曲线图[54]
Figure 5. Quantum dots infrared photodetectors and their performances: (a) Image of HgTe CQDs photodetectors array[51]; (b) IR absorbance of HgTe CQDs with different sizes[51]; (c) Structure scheme of HgSe CQD IR photodetector[52]; (d) IR absorbances for small and large HgSe CQD[52]; (e) Structure of the Si/PbS CQDs photodetector[53]; Energy band diagram of Si/PbS heterojunction: (f) Inverted heterojunction and (g) normal heterojunction[53]; (h) Responsivity curve of PbS CQDs photodetector[54]; (i) Detectivity curve of PbS CQDs photodetector[54
图 6 量子点光电二极管及其性能: (a) ITO/ZnO/PbSxSe1-xCQDs/Au光电二极管截面SEM图像[55];(b) ITO/ZnO/PbSxSe1-xCQDs/Au光电二极管的I-V特性稳定性测试结果[55];(c) Au/PbS CQDs/ITO光电二极管结构示意图[56];(d) Au/PbS CQDs/ITO光电二极管探测率曲线图[56];(e) ITO/TiO2/HgTe CQDs/Au光电二极管结构示意图[57];(f) ITO/TiO2/HgTe CQDs/Au光电二极管响应率曲线图和探测率直方图[57];(g) ITO/ZnO/PbS CQDs/Au光电二极管结构示意图[58];(h) ITO/ZnO/PbS CQDs/Au光电二极管瞬态测试结果快速上升和下降边缘组成部分的放大示意图[58];(i) Ag2Se CQDs的吸收光谱和光致发光发射光谱[59]
Figure 6. Quantum dots photodiodes and their performances: (a) The SEM diagram of the cross-section of the ITO/ZnO/PbSxSe1-xCQDs/Au photodiode[55]; (b) Stability of I-V characteristics of ITO/ZnO/PbSxSe1-xCQDs/Au photodiode[55]; (c) Schematic of the Au/PbS CQDs/ITO photodiode structure[56]; (d) Detectivitie curve of the Au/PbS CQDs/ITO photodiode[56]; (e) Scheme of ITO/TiO2/HgTe CQDs/Au photodiode structure[57]; (f) Responsivity curve and detectivity histogram of ITO/TiO2/HgTe CQDs/ Au photodiode[57]; (g) Schematic of ITO/ZnO/PbS CQDs/Au photodiode structure[58]; (h) Zoom-in transient photocur- rent test showing components of fast rise and fall edges of ITO/ZnO/PbS CQDs/Au photodiode[58]; (i) Absorption spectrum and photoluminescence emission spectrum[59]
图 7 量子点太阳能电池及其性能: (a) SSLX PbS CQDs固体薄膜的AFM图像[60];(b) LSLX PbS CQDs固体薄膜的AFM图像[60];(c) ITO/ZnO/PbS QDs太阳能电池截面SEM图像[61];(d) ITO/ZnO/PbS QDs太阳能电池的J-V曲线图[61];(e) ITO/ZnO/PbSe QDs/PbS QDs/Au太阳能电池结构示意图[62];(f) 不同浓度PbSe QDs油墨的胶体稳定性示意图[62];(g) FTO/TiO2/PbS CQDs/Au太阳能电池结构示意图[63];(h) FTO/TiO2/PbS CQDs/Au太阳能电池的PCE曲线图[63];(i) ITO/ZnO/PbS CQDs/BHJ太阳能电池的J-V曲线图和PCE直方图[64]
Figure 7. Quantum dots solar cells and their performances: (a) AFM image of the SSLX PbS CQDs solid film[60]; (b) AFM image of the LSLX PbS CQDs solid film[60]; (c) SEM image of the cross-section of the ITO/ZnO/PbS QDs solar cell[61]; (d) J-V curves of ITO/ZnO/PbS QDs solar cell[61]; (e) Scheme of the ITO/ZnO/PbSe QDs/PbS QDs/Au solar cell architecture[62]; (f) Colloidal stability of PbSe QD inks with different concentrations[62]; (g) Schematic diagram of the FTO/TiO2/PbS CQDs/Au solar cell structure[63]; (h) Statistical distribution of PCEs for FTO/TiO2/PbS CQDs/Au solar cell[63]; (i) J-V curves and PCE histograms of ITO/ZnO/PbS CQDs/BHJ solar cell[64]
表 1 不同量子点光电探测材料体系及其探测器件的主要性能指标
Table 1 Different quantum dots photoelectric detection material systems and the main performance indexes of detectors
Method Device structure Area/
mm2Illumination/nm D*/
JonesR/(AW-1) Ref. Spin-coated Si/SiO2/MoS2/PbS-EDT/Ti/Au - 700 7×1014 6×105 [5] Si/SiO2/ZnO/QDs/TiO2/Al - 520 - 6.84×10-2 [6] PMMA/PAA/Poly-TPD: PCBM/CsPbBr3QD/ Poly-TPD: PCBM - 440-600 2.2×1011 8×10-2 [7] Si/SiO2/1L-MoS2/PbS QDs - 850 1×1011 5.4×104 [8] MoS2/TiO2/PbS - 635 5×1012 105 [9] Si(p-doped)/SiO2/TMDC/PbS CQD/Au - 1800 > 1012 1400 [10] Si/SiO2/ZnO/PbS/Al - 640 7.9×1012 10.9 [11] Si/SiO2/PbS/CH3NH3PbI3/Au 0.05 365 4.9×1013 - [12] Polyimide/ITO/HgTe CQDs/Au - 2200 7.5×1010 0.5 [13] Glass/ITO/NiO/PbS/ZnO/Al 4.6 600 1.2×1012 - [14] PbS-QD/InGaZnO - 1310 1012 104 [15] SiO2/Si/WSe2/PbS/Au - 970 7×1013 2×105 [16] Si/SiO2/ SnTe QDs/Ti/Au - 940 1.3×109 3.7 [17] Si/SiO2/ graphene/ PbS - 950/1450 7×1013 107 [18] Si/SiO2/MoS2/TiO2/HgTe CQDs - 2000 1012 106 [19] Si/SiO2/HgTe QDs/PMMA 0.048 5000 5.4×1010 - [20] Si/SiO2/Poly-TPD: PCBM/QDs/Poly-TPD: PCBM/Au PD - 400-800 3.8×1011 0.86 [21] Drop-casted Al/Si/Bi2Se3/HgTe CQDs/Graphene/Au - 2400 5×109 0.9 [22] Si/SiO2/Gold mirror/HgTe CQDs 1.6 1550 109 1 [23] Si/SiO2/graphene/PbS QDs/Au - 895 - 1×107 [24] ITO/graphene: CdSe QDs/CdS nanorods/Ag - 530 6.85×1012 15.95 [25] Inkjet-printed Ag/ZnO/PbS ink 1 950 2×1012 1.5 [26] Nanoprinted Si/SiO2/graphene/PbS CQDs - 1280 ≥1010 - [27] Spray-casted MXene/PbS QDs - 470 2.4×1011 1.15×102 [28] -
[1] LI Y, DING Y, ZHANG Y, et al. Photophysical properties of ZnS quantum dots[J]. Journal of Physics and Chemistry of Solids, 1999, 60(1): 13-15. DOI: 10.1016/S0022-3697(98)00247-9
[2] Albaladejo-Siguan M, Baird E C, Becker-Koch D, et al. Stability of quantum dot solar cells: a matter of (life)time[J]. Adv. Energy Mater, 2021, 11(12): 2003457. DOI: 10.1002/aenm.202003457
[3] Efros A L, Brus L E. Nanocrystal quantum dots: from discovery to modern development[J]. ACS Nano, 2021, 15(4): 6192-6210. DOI: 10.1021/acsnano.1c01399
[4] ZHENG S, CHEN J, Johansson E M J, et al. PbS colloidal quantum dot inks for infrared solar cells[J]. I Science, 2020, 23(11): 101753.
[5] Kufer D, Nikitskiy I, Lasanta T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors[J]. Adv. Mater. 2015, 27(1): 176-180.
[6] Kim B J, Park S, Kim T Y, et al. Improving the photoresponsivity and reducing the persistent photocurrent effect of visible-light ZnO/quantum-dot phototransistors via a TiO2layer[J]. J. Mater. Chem. C, 2020, 8(46): 16384. DOI: 10.1039/D0TC03353G
[7] ZHAO C, LIU Y, CHEN L Y, et al. Transparent CsPbBr3quantum dot photodetector with a vertical transistor structure[J]. ACS Appl. Electron. Mater., 2021, 3(1): 337-343. DOI: 10.1021/acsaelm.0c00877
[8] Pak S, Cho Y, Hong J, et al. Consecutive junction-induced efficient charge separation mechanisms for high-performance MoS2/quantum dot photo-transistors[J]. ACS. Appl. Mater. Interfaces, 2018, 10(44): 38264-38271. DOI: 10.1021/acsami.8b14408
[9] Kufer D, Lasanta T, Bernechea M, et al. Interface engineering in hybrid quantum dot−2D phototransistors[J]. ACS Photonics, 2016, 3(7): 1324-1330. DOI: 10.1021/acsphotonics.6b00299
[10] Zdemir O, Ramiro I, Gupta S, et al. High sensitivity hybrid PbS CQD-TMDC photodetectors up to 2 μm[J]. ACS Photonics, 2019, 6(10): 2381-2386. DOI: 10.1021/acsphotonics.9b00870
[11] WANG X, XU K, YAN X, et al. Amorphous ZnO/PbS quantum dots heterojunction for efficient responsivity broadband photodetectors[J]. ACS Appl. Mater. Interfaces, 2020, 12(7): 8403-8410. DOI: 10.1021/acsami.9b19486
[12] ZHANG J, XU J, CHEN T, et al. Toward broadband imaging: surface-engineered PbS quantum dot/perovskite composite integrated ultra- sensitive photodetectors[J]. ACS Appl. Mater. Interfaces, 2019, 11(47): 44430-44437. DOI: 10.1021/acsami.9b14645
[13] TANG X, Ackerman M M, SHEN G, et al. Towards infrared electronic eyes: flexible colloidal quantum dots photovoltaic detectors enhanced by resonant cavity[J]. Small, 2019, 15(12): 1804920. DOI: 10.1002/smll.201804920
[14] Manders J R, LAI T H, AN Y, et al. Low-noise multispectral photodetectors made from all solution-processed inorganic semiconductors[J]. Adv. Funct. Mater., 2014, 24(45): 7205-7210. http://www.researchgate.net/profile/Yanbin_An/publication/265645931_Low-Noise_Multispectral_Photodetectors_Made_from_All_Solution-Processed_Inorganic_Semiconductors/links/56323fd908ae242468d9c907.pdf
[15] Choi H T, KANG J H, Ahn J, et al. Zero-dimensional PbS quantum dot−InGaZnO film heterostructure for short-wave infrared flat-panel imager[J]. ACS Photonics, 2020, 7(8): 1932-1941. DOI: 10.1021/acsphotonics.0c00594
[16] HU C, DONG D, YANG X, et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2toward high performance and broadband phototransistors[J]. Adv. Funct. Mater., 2016, 27(2): 1603605. http://d.wanfangdata.com.cn/periodical/3f27bb3093bd0e5e84f5ab294b6ef2aa
[17] FENG Y, CHANG H, LIU Y, et al. Ultralow dark current infrared photodetector based on SnTe quantum dots beyond 2 μm at room temperature[J]. Nanotechnology, 2021, 32(19): 195602. DOI: 10.1088/1361-6528/abde64
[18] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid grapheme-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368. DOI: 10.1038/nnano.2012.60
[19] HUO N, Gupta S, Konstantatos G, et al. MoS2-HgTe quantum dot hybrid photodetectors beyond 2 µm[J]. Adv. Mater., 2017, 29(17): 1606576. DOI: 10.1002/adma.201606576
[20] CHEN M, LAN X, TANG X, et al. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors[J]. ACS Photonics, 2019, 6(9): 2358-2365. DOI: 10.1021/acsphotonics.9b01050
[21] LIU Y, ZHAO C, LI J, et al. Highly sensitive CuInS2/ZnS core-shell quantum dot photodetectors[J]. ACS Appl. Electron. Mater., 2021, 3(3): 1236-1243. DOI: 10.1021/acsaelm.0c01064
[22] TANG X, CHEN M, Kamath A, et al. Colloidal quantum-dots/ graphene/silicon dual-channel detection of visible light and short-wave infrared[J]. ACS Photonics, 2020, 7(5): 1117-1121. DOI: 10.1021/acsphotonics.0c00247
[23] Chu A, Goubet N, Martinez B, et al. Near unity absorption in nanocrystal based short wave infrared photodetectors using guided mode resonators[J]. ACS Photonics, 2019, 6(10): 2553-2561. DOI: 10.1021/acsphotonics.9b01015
[24] SUN Z, LIU Z, LI J, et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity[J]. Adv. Mater, 2012, 24(43): 5878-5883. DOI: 10.1002/adma.201202220
[25] Veeramalai C P, Kollu P, LIN G, et al. Fabrication of graphene: CdSe quantum dots/CdS nanorod heterojunction photodetector and role of graphene to enhance the photoresponsive characteristics[J]. Nanotechnology, 2021, 23(31): 315204. DOI: 10.1088/1361-6528/abf87a
[26] Yousefi Amin A, Killilea N A, Sytnyk M, et al. Fully printed infrared photodetectors from PbS nanocrystals with Perovskite ligands[J]. ACS Nano, 2019, 13(2): 2389-2397. http://www.onacademic.com/detail/journal_1000041600212399_fa02.html
[27] Grotevent M J, Hail C U, Yakunin S, et al. Temperature-dependent charge carrier transfer in colloidal quantum dot/graphene infrared photo- detectors[J]. ACS Appl. Mater. Interfaces, 2021, 13(1): 848-856. DOI: 10.1021/acsami.0c15226
[28] SUN Y, LIU Z, DING Y, et al. Flexible broadband photodetectors enabled by MXene/PbS quantum dots hybrid structure[J]. IEEE Electron Device Letters, 2021, 42(12): 1814-1817. DOI: 10.1109/LED.2021.3120729
[29] XU K, ZHOU W, NING Z. Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors[J]. Small, 2020, 16(47): 2003397. DOI: 10.1002/smll.202003397
[30] Jana M K, Chithaiah P, Murali B, et al. Near infrared detectors based on HgSe and HgCdSe quantum dots generated at the liquid-liquid interface[J]. J. Mater. Chem. C, 2013, 1(39): 6184. DOI: 10.1039/c3tc31344a
[31] HE J, QIAO K, GAO L et al. Synergetic effect of silver nanocrystals applied in PbS colloidal quantum dots for high-performance infrared photodetectors[J]. ACS Photonics, 2014, 1(10): 936-943. DOI: 10.1021/ph500227u
[32] Nikitskiy I, Goossens S, Kufer D, et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor[J]. Nature Communications, 2016, 7: 11954. DOI: 10.1038/ncomms11954
[33] Adinolfi V, Sargent E H. Photovoltage field-effect transistors[J]. Nature, 2017, 45(7653): 252-252. http://datadryad.com/handle/10255/dryad.132152
[34] TANG X, Ackerman M M, CHEN M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nature Photonics, 2019, 13(4): 277. DOI: 10.1038/s41566-019-0362-1
[35] GENG X, WANG F, TIAN H, et al. Ultrafast photodetector by integrating Perovskite directly on silicon wafer[J]. ACS Nano, 2020, 14(3): 2860-2868. DOI: 10.1021/acsnano.9b06345
[36] TAI C Y, Hsiao B Y. Characterization of zirconia powder synthesized via reverse microemulsion precipitation[J]. Chem. Eng. Comm. , 2005, 192(10-12): 1525-1540.
[37] TAI C Y, Hsiao B Y, Chiu H Y. Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 237(1-3): 105-111. DOI: 10.1016/j.colsurfa.2004.02.014
[38] HUANG K, YIN L, LIU S, et al. Preparation and formation mechanism of A12O3nanoparticles by reverse microemulsion[J]. Trans. Nonfcrrous Met. Soc. China, 2007, 17(3): 633-637. DOI: 10.1016/S1003-6326(07)60147-2
[39] Khiew P S, Radiman S, HUANG N M, et al. Studies on the growth and characterization of CdS and PbS nanoparticles using sugar-ester nonionic water-in-oil microemulsion[J]. Journal of Crystal Growth, 2003, 254(1-2): 235-243. DOI: 10.1016/S0022-0248(03)01175-8
[40] Haouemi K, Touati F, Gharbi N. Characterization of a new TiO2nanoflower prepared by the Sol-Gel process in a reverse microemulsion[J]. J. Inorg Organomet Polym, 2011, 21(4): 929-936. DOI: 10.1007/s10904-011-9587-2
[41] CAO M, HE X, CHEN J, et al. Self-assembled nickel hydroxide three-dimensional nanostructures: a nanomaterial for alkaline rechargeable batteries[J]. Crystal Growth & Design, 2007, 7(1): 170-174. http://www.onacademic.com/detail/journal_1000035261945410_cdef.html
[42] GE J, CHEN W, LIU L, et al. Formation of disperse nanoparticles at the oil/water interface in normal microemulsions[J]. Chem. Eur. J., 2006, 12(25): 6552-6558. DOI: 10.1002/chem.200600454
[43] Vestal C R, ZHANG Z J. Synthesis of CoCrFeO4Nanoparticles using microemulsion methods and size-dependent studies of their magnetic properties[J]. Chem. Mater., 2002, 14(9): 3817-3822. DOI: 10.1021/cm020112k
[44] XU J, YIN A, ZHAO J. Surfactant-free microemulsion composed of oleic acid, n‑propanol, and H2O[J]. J. Phys. Chem. B, 2013, 117(1): 450-456. DOI: 10.1021/jp310282a
[45] Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers[J]. J. Am. Chem. Soc., 1992, 114(13): 5221-5230. DOI: 10.1021/ja00039a038
[46] Kirmani A R, Luther J M, Abolhasani M, et al. Colloidal quantum dot photovoltaics: current progress and path to gigawatt scale enabled by smart manufacturing[J]. ACS Energy Lett., 2020, 5(9): 3069-3100. DOI: 10.1021/acsenergylett.0c01453
[47] YAN C, HUANG C, YANG J, et al. Synthesis and characterizations of quaternary Cu2FeSnS4nanocrystals[J]. Chem. Commun. , 2012, 48(20): 2603-2605. DOI: 10.1039/c2cc16972j
[48] Kulpa-Greszta M, Tomaszewska A, Dziedzic A, et al. Rapid hot-injection as a tool for control of magnetic nanoparticle size and morphology[J]. RSC Adv., 2021, 11(34): 20708-20719. DOI: 10.1039/D1RA02977K
[49] Ikeda S, Sogawa S, Tokai Y, et al. Selective production of CuSbS2, Cu3SbS3, and Cu3SbS4 nanoparticles using a hot injection protocol[J]. RSC Adv., 2014, 4(77): 40969-40972. DOI: 10.1039/C4RA07648F
[50] Timonen J V I, Ikkala O, Ras R H A. et al. From hot-injection synthesis to heating-up synthesis of cobalt nanoparticles: observation of kinetically controllable nucleation[J]. Angew. Chem. Int. Ed., 2011, 50(9): 2080-2084. DOI: 10.1002/anie.201005600
[51] TANG X, TANG X, Lai K W C. Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films[J]. ACS Photonics, 2016, 3(12): 2396-2404. DOI: 10.1021/acsphotonics.6b00620
[52] Lhuillier E, Scarafagio M, Hease P, et al. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz[J]. Nano Lett., 2016, 16(2): 1282-1286. DOI: 10.1021/acs.nanolett.5b04616
[53] XU K, XIAO X, ZHOU W, et al. Inverted Si: PbS colloidal quantum dot heterojunction-based infrared photodetector[J]. ACS Appl. Mater. Interfaces, 2020, 12(13): 15414-15421. DOI: 10.1021/acsami.0c01744
[54] Vafaie M, FAN J Z, Najarian A M, et al. Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1, 550nm[J]. Matter, 2021, 4(3): 1042-1053. DOI: 10.1016/j.matt.2020.12.017
[55] Sulaman M, YANG S, SONG T, et al. High performance solution-processed infrared photodiode based on ternary PbSxSe1-xcolloidal quantum dots[J]. RSC Adv., 2016, 6(90): 87730-87737. DOI: 10.1039/C6RA19946A
[56] TANG Y, WU F, CHEN F, et al. A colloidal-quantum-dot infrared photodiode with high photoconductive gain[J]. Small, 2018, 14(48): 1803158. DOI: 10.1002/smll.201803158
[57] Jagtap A, Martinez B, Goubet N, et al. Design of a unipolar barrier for a nanocrystal-based short-wave infrared photodiode[J]. ACS Photonics, 2018, 5(11): 4569-4576. DOI: 10.1021/acsphotonics.8b01032
[58] XU Q, MENG L, Sinha K, et al. Ultrafast colloidal quantum dot infrared photodiode[J]. ACS Photonics, 2020, 7(5): 1297-1303. DOI: 10.1021/acsphotonics.0c00363
[59] Graddage N, OUYANG J Y, LU J, et al. Near-infrared-II photodetectors based on silver selenide quantum dots on mesoporous TiO2scaffolds[J]. ACS Appl. Nano Mater., 2020, 3(12): 12209-12217. DOI: 10.1021/acsanm.0c02686
[60] ZHANG X, Cappel U B, JIA D, et al. Probing and controlling surface passivation of PbS quantum dot solid for improved performance of infrared absorbing solar cells[J]. Chem. Mater., 2019, 31(11): 4081-4091. DOI: 10.1021/acs.chemmater.9b00742
[61] YANG X, YANG J, Khan J, et al. Hydroiodic acid additive enhanced the performance and stability of PbS-QDs solar cells via suppressing hydroxyl ligand[J]. Nano-Micro Lett., 2020, 12(1): 37. DOI: 10.1007/s40820-020-0372-z
[62] LIU Y, LI F, SHI G, et al. PbSe quantum dot solar cells based on directly synthesized semiconductive inks[J]. ACS Energy Lett., 2020, 5(12): 3797-3803. DOI: 10.1021/acsenergylett.0c02011
[63] ZHANG Y, WU G, DING C, et al. Surface-modifed graphene oxide/lead sulfde hybrid film‑forming ink for high-efficiency bulk nano-heterojunction colloidal quantum dot solar cells[J]. Nano-Micro Lett., 2020, 12(9): 111. DOI: 10.1007/s40820-020-00448-8?utm_medium=cpc&utm_campaign=Nano-Micro_Letters_TrendMD_1
[64] ZHANG Y, KAN Y, GAO K, et al. Hybrid quantum dot/organic heterojunction: a route to improve open-circuit voltage in PbS colloidal quantum dot solar cells[J]. ACS Energy Lett., 2020, 5(7): 2335-2342. DOI: 10.1021/acsenergylett.0c01136