On-Site Detection of Airtightness of Building Windows Based on Infrared Image Processing
-
摘要: 针对目前建筑外窗气密性现场检测方法无法保证其所有安装外窗的气密性等级全部达标,同时缺乏高效、便捷的检测手段,提出一种外窗气密性能等级现场检测方法,通过热像仪对外窗进行红外图像采集,对图像中的异常区域进行缺陷检测并计算缺陷面积,建立外窗缺陷红外检测模型。根据实验测得的室内外温差、外窗缺陷面积、空气渗透量,建立外窗空气渗透量计算模型,将此模型与外窗缺陷红外检测模型结合求得窗户的空气渗透量,实现外窗气密性能的现场检测,初步判定外窗是否符合相应的气密性能等级,提高了外窗气密性能现场检测的效率,为外窗气密性能等级现场判定提供一种新的途径。Abstract: Current methods of on-site detection of airtightness of building windows cannot ensure that the airtightness grades of all windows satisfy the standard. Moreover, there is a lack of efficient and convenient detection methods. Thus, we proposed an on-site method to detect the airtightness performance level of windows. In this study, an infrared image of the windows is collected using a thermal imager, the abnormal area in the image is detected and the defect area is calculated, then an infrared detection model for window defects is established. Based on the experimentally measured indoor–outdoor temperature difference, the defect area of the window and air infiltration, a calculation model for the air infiltration of windows is built. The model is combined with the infrared detection model of exterior windows defects to obtain the air infiltration of the window, and the on-site detection of the windows airtightness performance is realized and then preliminary determine of whether the window meets the corresponding airtightness performance level, which improves the efficiency of the on-site inspection of the airtightness performance of windows and provides a new method for the on-site determination of the airtightness performance level of windows.
-
-
表 1 外窗缺陷面积对比
Table 1 Defect area comparison of windows
Windows Value of experiment/cm2 Roberts/cm2 Sobel/cm2 Prewitt/cm2 Canny/cm2 Log/cm2 Threshold value segmentation/cm2 C0407(1) 0.90 0.96 1.39 1.39 1.70 1.62 0.92 C0407(2) 1.50 1.50 1.80 1.80 1.40 2.10 1.50 C0709(1) 3.20 3.21 4.03 3.84 3.46 4.48 3.65 C0814(1) 4.30 5.19 11.32 11.07 6.58 11.61 4.70 C1218(1) 11.20 11.50 14.44 14.40 15.44 7.20 11.52 C1218(2) 10.30 11.03 14.22 14.02 10.89 14.76 10.43 C1716(1) 9.20 9.30 11.92 11.90 9.32 4.96 9.30 C2114(1) 15.80 14.86 25.42 24.88 22.93 23.33 16.87 C2114(2) 11.50 13.80 17.20 17.00 13.80 16.30 13.90 C2418(1) 20.90 24.60 31.80 31.40 23.40 26.90 24.60 表 2 各处理方式误差汇总
Table 2 Summary of errors of each processing method
Roberts Sobel Prewitt Canny Log Threshold segmentation 7.36% 56.21% 53.86% 26.35% 61.92% 7.97% 表 3 外窗气密性能等级现场判定结果对比
Table 3 Comparison of site judgment results of airtightness performance grade of windows
Windows Experimental result Model result Relative error Air permeability/(m3/h) Air permeability per unit area/(m3/(m2·h)) Air permeability/(m3/h) Air permeability per unit area/(m3/(m2·h)) C0923 7.00 3.38 7.32 3.54 4.60% C0918 6.00 3.70 5.76 3.55 3.94% C1823 17.00 4.11 18.28 4.41 7.41% C0910 4.00 4.44 3.93 4.36 1.69% C0623 5.00 3.62 5.13 3.72 2.69% C0924 7.00 3.24 7.11 3.29 1.62% C1523 12.00 3.48 13.06 3.78 8.76% C1824 14.00 3.24 15.08 3.49 7.77% C1822 17.00 4.29 17.74 4.48 4.41% C1514 8.00 3.81 8.10 3.86 1.22% -
[1] 中国建筑节能协会. 中国建筑能耗研究报告2020[J]. 建筑节能, 2021, 49(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYY202102001.htm China Association of Building Energy Efficiency. China building energy consumption annual report 2020[J]. Building Energy Efficiency, 2021, 49(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYY202102001.htm
[2] 郭兴忠, 杨闯, 张超, 等. 节能门窗热工性能对建筑能耗影响的模拟研究[J]. 建筑材料学报, 2014, 17(2): 261-265, 297. DOI: 10.3969/j.issn.1007-9629.2014.02.014 GUO Xingzhong, YANG Chuang, ZHNAG Chao, et al. Simulation on thermal performance of energy-saving windows and door and its influence on building energy consumption[J]. Journal of Building Materials, 2014, 17(2): 261-265, 297. DOI: 10.3969/j.issn.1007-9629.2014.02.014
[3] 中国建筑科学研究院. 建筑幕墙、门窗通用技术条件: GB/T 31433-2015[S]. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. China Academy of Building Research. General specification for building curtain wall, windows and doors: GB/T 31433-2015[S]. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China; Standardization Administration of the People's Republic of China.
[4] 中国建筑科学研究院有限公司. 建筑外门窗气密、水密、抗风压性能检测方法: GB/T 7106-2019[S]. 国家市场监督管理总局, 国家标准化管理委员会. China Academy of Building Research. Test methods of air permeability, watertightness, wind load resistance performance for building external windows and doors: GB/T 7106-2019[S]. State Administration for Market Regulation; Standardization Administration.
[5] 陈航. 建筑门窗三性检测方法及常见问题分析[J]. 建材发展导向, 2021, 19(20): 41-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YNJC202120019.htm CHEN Hang. Building doors and windows following detection method and the analysis of common problems [J]. Development Guide to Building Materials, 2021, 19(20): 41-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YNJC202120019.htm
[6] 史国权. 建筑门窗工程检测方法及结果分析[J]. 建材与装饰, 2018, 40: 48-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYS201840033.htm SHI Guoquan. Testing methods and result analysis of building doors and windows engineering[J]. Construction Materials & Decoration, 2018, 40: 48-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYS201840033.htm
[7] Figuli L, Papan D, Z Papánová, et al. Experimental mechanical analysis of traditional in-service glass windows subjected to dynamic tests and hard body impact[J]. Smart Structures and Systems, 2021, 27(2): 365-378.
[8] Mohan A, Poobal S. Crack detection using image processing: a critical review and analysis[J]. Alexandria Engineering Journal, 2017, 57(2): 787-798.
[9] Gehri N, J Mata-Falcón, Kaufmann W. Automated crack detection and measurement based on digital image correlation[J]. Construction and Building Materials, 2020, 256: 119383. DOI: 10.1016/j.conbuildmat.2020.119383
[10] Freitas S S D, Freitas V P D, Barreira E. Detection of fade plaster detachments using infrared thermography – a nondestructive technique[J]. Construction & Building Materials, 2014, 70: 80-87.
[11] Ibarra-Castanedo C, Sfarra S, Klein M, et al. Solar loading thermography: time-lapsed thermographic survey and advanced thermographic signal processing for the inspection of civil engineering and cultural heritage structures[J]. Infrared Physics & Technology, 2017, 82: 56-74.
[12] Thusyanthan I, Blower T, Cleverly W. Innovative uses of thermal imaging in civil engineering[C]//Proceedings of the Institution of Civil Engineers, 2017, 170(CE2): 81-87.
[13] Ostańska Anna. Thermal imaging for detection of defects in envelopes of buildings in use: qualitative and quantitative analysis of building energy performance[J]. Periodica Polytechnica Civil Engineering, 2018, 62(4): 939-946.
[14] Pan N H, Tsai C H, Chen K Y, et al. Enhancement of external wall decoration material for the building in safety inspection method[J]. Journal of Civil Engineering and Management, 2020, 26: 216-226.
[15] Tiberio A J, Branchi P. A study of air leakage in residential buildings[C]//2013 International Conference on New Concepts in Smart Cities: Fostering Public and Private Alliances (SmartMILE) of IEEE, 2013: 1-4.
[16] LI X, ZHOU W, LIN D. Research on air infiltration predictive models for residential building at different pressure[J]. Building Simulation, 2020: 1-12.
[17] 魏林滨, 李震, 李迪, 等. 被动式房屋气密性测试方法分析与实践应用[J]. 建设科技, 2015, 302(23): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJS201523017.htm WEI Linbin, LI Zhen, LI Di, et al. Passive building air tightness test method analysis and practice application[J]. Construction Science and Technology, 2015, 302(23): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJS201523017.htm
[18] Ziou D, Tabbone S. Edge detection techniques-an overview[J]. Pattern Recognition and Image Analysis C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii, 1998, 8: 537-559.
[19] 任浩, 谢磊, 陈惠芳. 基于动态边缘检测的图像锐化算法[J]. 杭州电子科技大学学报, 2012, 32(4): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HXDY201204007.htm REN Hao, XIE Lei, CHEN Huifang. Image sharpening algorithm based on dynamic edge detection[J]. Journal of Hangzhou Dianzi University, 2012, 32(4): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HXDY201204007.htm
[20] JIANG M. Edge enhancement and noise suppression for infrared image based on feature analysis[J]. Infrared Physics & Technology, 2018, 91: 142-152.
[21] Kim C, Choi J S, Jang H, et al. Automatic detection of linear thermal bridges from infrared thermal images using neural network[J]. Applied Sciences, 2021, 11(3): 931.
[22] 张玲玲, 许廒, 张继冉, 等. 基于红外图像处理技术的建筑外窗缺陷面积计算研究[J]. 红外技术, 2022, 44(12): 1358-1366. http://hwjs.nvir.cn/article/id/f13166bf-7f5c-4baa-b984-061eea11215c ZHANG Lingling, XU Ao, ZHANG Jiran, et al. Research on calculation of defect area of building exterior windows based on infrared image processing technology[J]. Infrared Technology, 2022, 44(12): 1358-1366. http://hwjs.nvir.cn/article/id/f13166bf-7f5c-4baa-b984-061eea11215c
[23] 潘振, 刘伟, 陈刚, 等. 建筑外窗自然状态渗透能耗测试设备研制[J]. 新型建筑材料, 2019, 46(12): 141-144. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201912036.htm PAN ZHEN, LIU Wei, CHEN Gang, et al. Development of testing equipment for permeation energy consumption building outer window in natural state[J]. New Building Materials, 2019, 46(12): 141-144. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201912036.htm
[24] 季永明, 端木琳. 某近零能耗建筑空气渗透量数值分析[J]. 建筑科学, 2019, 35(10): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201910005.htm JI Yongming, DUAN Mulin. Air infiltration rate simulation of typical zero energy building[J]. Building Science, 2019, 35(10): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201910005.htm
[25] Mijwel M M, Esen A, Shamil A. Overview of neural networks[J]. Computer Engineering Techniques Department, 2019(1): 1-2.
[26] 张龙, 董峰, 傅雨田. 基于神经网络的红外图像非均匀性校正[J]. 红外技术, 2018, 40(2): 164-169. http://hwjs.nvir.cn/article/id/hwjs201802011 ZHANG Long, DONG Feng, FU Yutian. Non-uniformity correction for infrared image using neural [J]. Infrared Technology, 2018, 40(2): 164-169. http://hwjs.nvir.cn/article/id/hwjs201802011
[27] 王晓辉, 刘静蕾, 边会娟, 等. 基于改进BP神经网络的室内环境热舒适度预测与分析[J]. 控制工程, 2021, 28(7): 1437-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF202107023.htm WANG Xiaohui, LIU Jinglei, BIAN Huijuan, et al. Prediction and analysis of indoor environment thermal comfort based on improved BP neural network[J]. Control Engineering of China, 2021, 28(7): 1437-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF202107023.htm
[28] ZHANG X Y, YIN F, ZHANG Y M, et al. Drawing and recognizing Chinese characters with recurrent neural network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 849-862.
-
期刊类型引用(5)
1. 拜晓锋,张磊,闫士君,钱芸生,张琴,苏悦,程宏昌,成伟,李琦. 紫外像增强器信噪比测量技术. 红外技术. 2024(11): 1302-1307 . 本站查看
2. 罗郭朝,许孙龙,李从飞,王友康,邹鹏,袁银麟. 微光像增强器信噪比测试仪结构设计与分析. 佳木斯大学学报(自然科学版). 2023(03): 61-66 . 百度学术
3. 王友康,李从飞,韩文昇,胡雨阳,邹鹏. 基于FPGA的像增强器信噪比测试仪控制系统设计. 电子测量技术. 2023(19): 1-7 . 百度学术
4. 郝芳,张平,杨海金,王瑶,卞臻臻,詹江,郑伟,梁琦. 浅析光纤倒像器固有误差对应用的影响. 应用光学. 2022(06): 1153-1157 . 百度学术
5. 陈旭浪,党小刚,郭欣达,王磊,张姝丽,拜晓锋,韩坤,袁渊,李军国,成伟. 基于三代微光ICCD成像装置的目标对比度影响因素测试分析. 应用光学. 2020(06): 1241-1246 . 百度学术
其他类型引用(1)