Simulation of Infrared Images at Different Heights and Atmospheric Modes
-
摘要:
本文以飞机平台的红外图像为数据源,研究了不同大气模式下成像高度对红外仿真图像的影响,推导了随热像仪成像高度变化的辐射亮度计算公式。分别采用MODTRAN和LOWTRAN两种大气辐射传输模型进行不同高度的红外图像大气修正,并对所得仿真数据进行了分析比较得出:在高度低于20 km时,同种大气模式下两种模型仿真数据接近,误差不大,都很理想;在高于20 km时,LOWTRAN模型仿真数据参考价值不大,MODTRAN模型结果更接近实际情况、更实用。
Abstract:The atmosphere and imaging height directly affect the infrared image quality of thermal imagers. Using the infrared image of an aircraft platform as the data source, infrared simulation images at different heights and atmospheric modes were studied, and a simulation calculation formula for the height of the thermal imager was derived. By selecting different atmospheric modes, examining MODTRAN and LOWTRAN atmospheric radiation transmission models for infrared image atmospheric correction at different heights, and analyzing and comparing the obtained simulation data, it is concluded that when the distance is less than 20 km, the simulation data of the two models in the same atmospheric mode are close and that the error is small, which is ideal. When the distance was greater than 20 km, the reference value of the LOWTRAN model simulation data was small, and the results of the MODTRAN model were closer to the actual situation and therefore more practical.
-
Keywords:
- simulation /
- thermal infrared radiation /
- atmospheric mode
-
-
表 1 20 km高度的平台仿真结果
Table 1 Simulation results of 20 km platform
Airborne image radiation luminance data/(W·cm-2·sr-2) Simulation platform image radiation brightness data /(W·cm-2·sr-2) Mid-latitude winter Tropical atmosphere (MODTRAN) (LOWTRAN) (MODTRAN) (LOWTRAN) 33.62 28.92 28.35 25.8 25.41 33.64 28.93 28.37 25.83 25.43 33.62 28.92 28.35 25.80 25.41 33.64 28.93 28.37 25.83 25.43 33.95 29.21 28.62 26.09 25.68 33.9 29.15 28.58 26.04 25.54 33.93 29.2 28.6 26.07 25.67 33.95 29.21 28.62 26.09 25.68 33.06 28.61 28.33 25.52 25.46 33.04 28.59 28.31 25.47 25.43 33.11 28.69 28.37 25.64 25.6 33.12 28.71 28.39 25.65 25.62 Relative error 1.67% 1.12% 表 2 100 km高度的平台仿真结果
Table 2 Simulation results of 100 km platform
Airborne image radiation luminance data/(W·cm-2·sr-2) Simulation platform image radiation brightness data /(W·cm-2·sr-2) Mid-latitude winter Tropical atmosphere (MODTRAN) (LOWTRAN) (MODTRAN) (LOWTRAN) 33.62 25.26 28.33 22.81 25.4 33.64 25.61 28.36 22.83 25.43 33.62 25.26 28.33 22.81 25.4 33.64 25.61 28.36 22.83 25.43 33.95 26.58 28.59 23.09 25.66 33.9 26.55 28.54 23.04 25.54 33.93 26.57 28.57 23.07 25.65 33.95 26.58 28.59 23.09 25.66 33.06 24.67 28.32 22.18 25.46 33.04 24.61 28.30 22.16 25.43 33.11 24.70 28.38 22.34 25.61 33.12 24.73 28.41 22.35 25.63 Relative error 10.10% 11.00% -
[1] 肖甫, 吴慧中, 肖亮, 等. 地面坦克目标红外热成像物理模型研究[J]. 系统仿真学报, 2005(11): 2577-2579, 2585. DOI: 10.3969/j.issn.1004-731X.2005.11.002 XIAO Fu, WU Huizhong, XIAO Liang, et al. Research on infrared imaging model of land tank target[J]. Journal of System Simulation, 2005(11): 2577-2579, 2585. DOI: 10.3969/j.issn.1004-731X.2005.11.002
[2] 姚涛, 李一凡. 场景红外成像仿真原理和应用[J]. 计算机仿真, 2004, 21(1): 96-98, 135. DOI: 10.3969/j.issn.1006-9348.2004.01.035 YAO Tao, LI Yifan. Principle and application of infrared imaging simulation for scene[J]. Computer Simulation, 2004, 21(1): 96-98, 135. DOI: 10.3969/j.issn.1006-9348.2004.01.035
[3] 韩涛, 朱学光. 一种计算大气透过率的方法[J]. 红外技术, 2002, 24(6): 51-53. DOI: 10.3969/j.issn.1001-8891.2002.06.012 HAN Tao, ZHU Xueguang. A method of calculating the atmosphere transmissibility[J]. Infrared Technology, 2002, 24(6): 51-53. DOI: 10.3969/j.issn.1001-8891.2002.06.012
[4] 王兵学, 张启衡, 陈昌彬, 等. 凝视型红外捜索跟踪系统的作用距离模型[J]. 光电工程, 2004, 31(7): 8-11. WANG Bingxue, ZHANG Qiheng, CHEN Changbin, et al. A mathematical model for operating range of a staring IR search and track system[J]. Opto-Electronic Engineering, 2004, 31(7): 8-11.
[5] 贾庆莲, 乔彦峰, 邓文渊. 周视搜索系统对点目标的作用距离分析[J]. 光学学报, 2009, 29(4): 937-943. JIA Qinglian, QIAO Yanfeng, DENG Wenyuan. Analysis for point- target detection range of panoramic searching system[J]. Acta Optica Sinica, 2009, 29(4): 937-943.
[6] 张乐, 梁冬明, 姚梅, 等. 红外搜索跟踪系统作用距离等效折算[J]. 红外与激光工程, 2013, 42(1): 26-30. ZHANG Le, LIANG Dongming, YAO Mei, et al. Equivalent calculation of operating range of IRST[J]. Infrared and Laser Engineering. 2013, 42(1): 26-30.
[7] ZHAO Y, WU P, SUN W. Calculation of infrared system operating distance by spectral bisection method[J]. Infrared Physics & Technology, 2014, 63(3): 198-203.
[8] 江飞虹, 吴文贤, 石岩. 机载热红外图像特征的提取与分析[J]. 烟台大学学报(自然科学与工程版版), 2007(4): 295-298. JIANG Feihong, WU Wenxian, SHI Yan. Features extraction and analysis from airborne thermal infrared image[J]. Journal of Yantai University (Natural Science and Engineering Edition), 2007(4): 295-298.
[9] 李金萍. 机载红外图像转换生成卫星仿真图像的大气修正方法研究[J]. 激光与红外, 2023, 53(1): 75-78. DOI: 10.3969/j.issn.1001-5078.2023.01.011 LI Jinping. Research on atmospheric correction method of airborne infrared image conversion to satellite simulation image[J]. Laser & Infrared, 2023, 53(1): 75-78. DOI: 10.3969/j.issn.1001-5078.2023.01.011
[10] 刘其涛. 大气对红外热像仪成像仿真的影响[J]. 红外, 2006(1): 1-4. LIU Qitao. Influence of atmosphere on simulation of infrared thermal-imager imaging[J]. Infrared, 2006(1): 1-4.
[11] 刘美玲, 明冬萍. 遥感地学应用实验教程[M]. 北京: 科学出版社, 2018. LIU Meiling, MING Dongping. Experimental Course on Remote Sensing Geoscience Applications[M]. Beijing: Science Press, 2018.
[12] 田杰. 目标红外辐射特征与建模仿真技术研究[D]. 南京: 南京理工大学, 2016. TIAN Jie. Research on Target Infrared Radiation Characteristics and Modeling and Simulation Technology[D]. Nanjing: Nanjing University of Science and Technology, 2016.
[13] 孟凡斌, 郑丽. 基于LOWTRAN7的红外大气透过率计算方法[J]. 光电技术应用, 2009, 24(3): 29-32, 66. DOI: 10.3969/j.issn.1673-1255.2009.03.008 MENG Fanbin, ZHENG Li. LOWTRAN7-based calculation method of IR transmittance in the atmosphere[J]. Electro-Optic Technology Application, 2009, 24(3): 29-32, 66. DOI: 10.3969/j.issn.1673-1255.2009.03.008