模拟绿色植被光谱特征的高光谱伪装材料与技术研究进展

祖梅, 鄢峰, 甘沅丰, 刘雪梅, 刘东青, 李铭洋, 程海峰

祖梅, 鄢峰, 甘沅丰, 刘雪梅, 刘东青, 李铭洋, 程海峰. 模拟绿色植被光谱特征的高光谱伪装材料与技术研究进展[J]. 红外技术, 2022, 44(10): 1018-1026.
引用本文: 祖梅, 鄢峰, 甘沅丰, 刘雪梅, 刘东青, 李铭洋, 程海峰. 模拟绿色植被光谱特征的高光谱伪装材料与技术研究进展[J]. 红外技术, 2022, 44(10): 1018-1026.
ZU Mei, YAN Feng, GAN Yuanfeng, LIU Xuemei, LIU Dongqing, LI Mingyang, CHENG Haifeng. Progress on Hyperspectral Camouflage Materials and Techniques for Spectral Characteristic Simulation of Green Vegetation[J]. Infrared Technology , 2022, 44(10): 1018-1026.
Citation: ZU Mei, YAN Feng, GAN Yuanfeng, LIU Xuemei, LIU Dongqing, LI Mingyang, CHENG Haifeng. Progress on Hyperspectral Camouflage Materials and Techniques for Spectral Characteristic Simulation of Green Vegetation[J]. Infrared Technology , 2022, 44(10): 1018-1026.

模拟绿色植被光谱特征的高光谱伪装材料与技术研究进展

基金项目: 

国防科工局稳定支持科研项目 WDZC20195500505

详细信息
    作者简介:

    祖梅(1983-),女,博士,国防科技大学空天科学学院副研究员,主要从事光电信息功能材料方向的研究。E-mail:zumei2003@163.com

  • 中图分类号: TB34

Progress on Hyperspectral Camouflage Materials and Techniques for Spectral Characteristic Simulation of Green Vegetation

  • 摘要: 高光谱成像技术对伪装隐身技术提出了新的更高要求。研究绿色植被光谱特征的各种模拟技术,可为解决高光谱成像探测下目标的伪装问题提供新的思路。本文总结了绿色植物在可见-近红外波段以及热红外波段的光谱特征,分析了其在不同波段的光谱特性形成机制,阐述了近年来模拟绿色植被光谱特征的高光谱伪装材料与技术的研究进展,分析了现有高光谱伪装材料与技术的特点及存在的弊端,提出了模拟绿色植被光谱特征的高光谱伪装材料与技术的发展方向和趋势。
    Abstract: Hyperspectral imaging technologies have put forward newer and higher requirements for camouflage and stealth technology. By studying the spectral characteristic simulation technology of various green vegetation, new ideas can be explored to solve the problem of target camouflage under hyperspectral imaging reconnaissance. This paper summarized spectral features of greenery in the visible-near-infrared band as well as the thermal infrared band, and analyzed the formation mechanism of its spectral property in those two bands. Furthermore, the research progress on the hyperspectral camouflage materials and techniques for simulating the spectral characteristics of green vegetation in recent years were described. Based on the analysis of the disadvantages of the existing hyperspectral camouflage materials and technologies, the development direction and trend of hyperspectral camouflage materials and technologies for simulating the spectral characteristics of green vegetation were proposed.
  • 图  1   普通绿色伪装材料和绿色植物背景的反射光谱曲线

    Figure  1.   Spectral curves of general green camouflage materials and green plant background

    图  2   不同绿色植被的反射光谱

    Figure  2.   Spectral reflectance of different green vegetation

    图  3   叶绿素a和b的分子结构[7]

    Figure  3.   The molecular structure of chlorophyll a and b[7]

    图  4   新鲜香樟叶和枯黄香樟叶的光谱对比

    Figure  4.   Spectral contrast of fresh camphor leaf and yellow camphor leaf

    图  5   不同种类绿色叶片的光谱特征(a) 黑栎对比铝镜的平均反射率光谱[11];(b) 绿色和衰老(黄色)樱桃叶片的反射率光谱[11]

    Figure  5.   Spectral characteristics of different green leaves (a) Average reflectance spectra of black oak (Quercus velutina) versus an aluminium mirror; (b) reflectance spectra of green and senescent (yellow) cherry leaves[11]

    图  6   采用实验室用DHR光谱仪和野外光谱仪测量得到的(a) 野生黑樱桃以及(b) 红花槭的红外发射率光谱[12]

    Figure  6.   DHR and field spectrometer measurements of (a) Prunus serotina (wild cherry) and (b) Acer rubrum (red maple)[12]

    图  7   3个月光照处理前后的仿生材料的反射光谱曲线[14]

    Figure  7.   Before and after three-month sunlight treatment[14]

    图  8   微胶囊仿生材料与樟树及梧桐的反射光谱曲线[15]

    Figure  8.   Reflectance spectra of poplar leaves and bionic composite material[15]

    图  9   保水率随时间的变化曲线[16]

    Figure  9.   The curves of water retention rate with time[16]

    图  10   植物叶片与仿生材料的反射率:(a1) 桂花树叶片,(a2) 樟树叶片,(a3) M2[18]

    Figure  10.   The solar spectrum reflectances of (a1) camphor leaf (a2) Osmanthus fragrans leaf and (a3) bionic leaf[18]

    图  11   酞菁锌的分子结构对其紫外可见吸收光谱的影响:(a)分子结构图;(b) 紫外可见吸收光谱[24]

    Figure  11.   Effect of molecular structure of zinc phthalocyanine on its UV-VIS absorption spectrum (a) molecular structure; (b) UV-Vis absorption spectra

    图  12   以DMSO作溶剂的酞菁铜的紫外可见吸收光谱[27]

    Figure  12.   UV-Vis absorption spectra of copper phthalocyanine in DMSO[27]

    图  13   不同纯度四硝基酞菁钴的光谱反射曲线[24]

    Figure  13.   Spectral reflectance curves of different purity tetra-nitrophthalocyanine cobalt metal[24]

  • [1] 程红飞, 黄大庆. 多频谱兼容隐身材料的研究进展[J]. 航空材料学报, 2014, 34(5): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201405015.htm

    CHENG Hongfei, HUANG Daqing. Research progress of multispectral compatible stealth materials[J]. Journal of Aeronautical Materials, 2014, 34(5): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201405015.htm

    [2] 邓龙江, 周佩珩, 陆海鹏, 等. 多频谱隐身涂层材料的研究进展[J]. 中国材料进展, 2013, 32(8): 449-462. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201308001.htm

    DENG Longjiang, ZHOU Peiyan, LU Haipeng, et al. Research progress of multispectral stealth coating materials[J]. Progress of Chinese Materials, 2013, 32(8): 449-462. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201308001.htm

    [3] 黄洁, 李周波, 张松. 一种新型防可见光红外光伪装涂料的研制[J]. 电镀与涂饰, 2004, 23(5): 24-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DDTL200405007.htm

    HUANG Jie, LI Zhoubo, ZHANG Song. Development of a new anti-visible infrared camouflage coating[J]. Electroplating & Finishing, 2004, 23(5): 24-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DDTL200405007.htm

    [4] 马丽芳, 时家明, 陈宗胜. 绿色伪装涂料可见光和近红外反射率的探讨[J]. 红外技术, 2010, 32(5): 268-272. DOI: 10.3969/j.issn.1001-8891.2010.05.005

    MA Lifang, SHI Jiaming, CHEN Zongsheng. Study on visible and near-infrared reflectance of green camouflage coating[J]. Infrared Technology, 2010, 32(5): 268-272. DOI: 10.3969/j.issn.1001-8891.2010.05.005

    [5] 张朝阳, 程海峰, 王茜, 等. 多波段伪装涂料制备及性能表征[J]. 新技术新工艺, 2005, 12: 44-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XJXG200512020.htm

    ZHANG Chaoyang, CHENG Haifeng, WANG Qian, et al. Preparation and characterization of multiband camouflage coatings[J]. New Technology & New Process, 2005, 12: 44-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XJXG200512020.htm

    [6] 刘志明, 吴文健, 张勇. 植物叶片仿生伪装结构模型设计[J]. 功能材料, 2007, 38(z): 3119-3122. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GNCL200711008060.htm

    LIU Zhiming, WU Wenjian, ZHANG Yong. Design of bionic camouflage structure model of plant leaves[J]. Functional Materials, 2007, 38(z): 3119-3122. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GNCL200711008060.htm

    [7] 夏晨硕, 陈乐, 孙惠敏. 等. 一种新型高光谱涂层的设计与研制[J]. 功能材料, 2018, 49(7): 7151-7155. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201807026.htm

    XIA Chenshuo, CHEN Le, SUN Huimin, et al. Design and development of a new type of hyperspectral coating[J]. Functional Materials, 2018, 49(7): 7151-7155. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201807026.htm

    [8]

    Woolley J T. Reflectance and transmittance of light by leaves[J]. Plant Physiol, 1971, 47(5): 656-662. DOI: 10.1104/pp.47.5.656

    [9] 张怀斌. 叶绿素的光学性质及其应用[D]. 济南: 山东师范大学, 2008.

    ZHANG Huaibin. Optical Properties and Applications of Chlorophyll[D]. Jinan: Shandong Normal University, 2008.

    [10]

    Langhoff S R, Davidson E R, Gouter Man M, et al. Zero field splitting of the triplet state of porphyrins. Ⅱ[J]. Journal of Chemical Physics, 1975, 62(1): 169-176. DOI: 10.1063/1.430249

    [11]

    Salisbury J W. Preliminary measurements of leaf spectral reflectance in the 8~14 μm[J]. Region. Int. J. Remote Sens., 1986(7): 1879-1886.

    [12]

    BeatrizRibeiro da Luz, Crowley J K. Identification of plant species by using high spatial and spectral resolution thermal infrared (8.0-13.5 μm) imagery[J]. Remote Sens. Environ., 2010, 114: 404-413. DOI: 10.1016/j.rse.2009.09.019

    [13] 刘志明, 吴文健, 胡碧茹. 植物叶片仿生伪装材料研究[D]. 长沙: 国防科学技术大学, 2009.

    LIU Zhiming, WU Wenjian, HU Biru. Research on Bionic Camouflage Material of Plant Leaves[D]. Changsha: National University of Defense Technology, 2009.

    [14] 杨玉杰, 胡碧茹, 吴文健. 植物叶片仿生伪装材料的设计与制备[J]. 国防科技大学学报, 2011, 33(5): 50-53. DOI: 10.3969/j.issn.1001-2486.2011.05.010

    YANG Yujie, LIU Zhiming, HU Biru, et al. Design and preparation of bionic camouflage materials by simulating plant leaves[J]. Journal of Bionic Engineering, 2011, 33(5): 50-53. DOI: 10.3969/j.issn.1001-2486.2011.05.010

    [15]

    QIN Rui, XU Guoyue, GUO Li. Preparation and characterization of a novel poly (urea-formaldehyde) microcapsules with similar reflectance spectrum to leaves in the UV-Vis-NIR region of 300-2500 nm[J]. Materials Chemistry and Physics, 2012, 136(2-3): 737-743. DOI: 10.1016/j.matchemphys.2012.07.050

    [16] 郭利, 徐国跃, 李澄, 等. 一种新型近红外伪装涂层的制备及光谱性能研究[J]. 红外技术, 2012, 34(10): 588-592. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201210007.htm

    GUO Li, XU Guoyue, LI Chen, et al. Study on preparation and spectral properties of a new near-infrared camouflage coating[J]. Infrared Technology, 2012, 34(10): 588-592. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201210007.htm

    [17] 李敏, 李澄, 郑顺丽, 等. 模拟绿色植物光谱的填料设计与涂层制备研究[J]. 红外技术, 2015, 37(9): 788-792. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201509018.htm

    LI Min, LI Chen, ZHEN Shunli, et al. Study on packing design and coating preparation for simulating green plant spectrum[J]. Infrared Technology, 2015, 37(9): 788-792. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201509018.htm

    [18]

    YE Hong, GAO Ying, LI Shimin, et al. Bionic leaves imitating the transpiration and solar spectrum reflection characteristics of natural leaves[J]. Journal of Bionic Engineering, 2015, 12(1): 109-116. DOI: 10.1016/S1672-6529(14)60105-0

    [19] 夏晨硕. 一种新型高光谱涂层的设计与研制[D]. 南京: 南京大学, 2018.

    XIA Chenshuo. Design and Development of a New Type of Hyperspectral Coating[D]. Nanjing: Nanjing University, 2018.

    [20] 胡安然. 仿植物叶片光谱特征材料的制备及其性能[D]. 无锡: 江南大学, 2020.

    HU Anran. Preparation and Properties of Plant Leaf Spectral Characteristic Materials [D]. Wuxi: Jiangnan University, 2020.

    [21] 王灿. 基于有机色素插层的LDHs仿绿色植被光谱颜料制备方法研究[D]. 成都: 西华大学, 2020.

    WANG C. Study on the Preparation Method of LDHs Spectral Pigment Imitating Green Vegetation Based on Organic Pigment Intercalation[D]. Chengdu: Xihua University, 2020.

    [22] 许凯. 植物叶片蒸腾和太阳光谱反射特征及其仿生[D]. 合肥: 中国科学技术大学, 2021.

    XU K. Characteristics of Transpiration and Solar Spectral Reflection of Plant Leaves and Their Biomimetics[D]. Hefei: University of Science and Technology of China, 2021.

    [23] 刘淑萍, 刘岩. 金属叶绿素衍生物的制备及光谱研究进展[J]. 河北联合大学学报, 2014, 36(2): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-HBLG201402020.htm

    LIU Shuping, LIU Yan. Progress in preparation and spectroscopy of metallic chlorophyll derivatives[J]. Journal of Hebei United University, 2014, 36(2): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-HBLG201402020.htm

    [24] 许浩, 刘珩. 酞菁化合物合成及光谱性能研究[J]. 中国光学, 2018, 11(5): 765-772. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201805007.htm

    XU Hao, LIU Yan. Study on synthesis and spectral properties of phthalocyanine compounds[J]. China Optical, 2018, 11(5): 765-772. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201805007.htm

    [25] 黄金陵, 彭亦如, 陈耐生. 金属酞菁配合物结构研究的一些谱学方法[J]. 光谱学与光谱分析, 2001, 21(1): 16. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200101000.htm

    HUANG Jinlin, PENG Yiru, CHEN Naisheng. Some spectral methods for studying the structure of metal phthalocyanine complexes[J]. Spectroscopy and Spectral Analysis, 2001, 21(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200101000.htm

    [26]

    MA Chunyu, YE Kaiqi, DU Guotong, et al. Synthesis and hypochromic effect of phthalocyanines and metal phthalocyanines[J]. Dyes and Pigments, 2007, 74(1): 141-147.

    [27] 夏道成, 李万程, 李洁筠, 等. 1, 11, 15, 25-四羟基-4, 8, 18, 22-二(桥联二丙羧基)酞菁铜的合成及性质研究[J]. 光谱学与光谱分析, 2015(8): 2292-2296. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201508051.htm

    XIA Daocheng, LI Wancheng, LI Jieyun, et al. Synthesis and properties of copper phthalocyanine 1, 11, 15, 25-tetrahydroxy -4, 8, 18, 22-two (bridged dipropylene carboxyl)[J]. Spectroscopy And Spectral Analysis, 2015(8): 2292-2296. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201508051.htm

    [28]

    JIN L, CHEN D J. Enhancement in photovoltaic performance of phthalocyanine-sensitized solar cells by attapulgite nanoparticles[J]. Electrochimica Acta, 2012, 72(7): 40-45.

    [29] 王建宇, 李春来, 姬弘桢, 等. 热红外高光谱成像技术的研究现状与展望[J]. 红外与毫米波学报, 2015, 34(1): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201501010.htm

    WANG Jianyu, LI Chunlai, JI Hongzhen, et al. Research status and prospect of thermal infrared hyperspectral imaging technology[J]. Journal of Infrared Millim. Waves, 2015, 34(1): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201501010.htm

图(13)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  385
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-13
  • 修回日期:  2022-06-23
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回