Research on Terahertz Band Demultiplexer Based on Metamaterials
-
摘要: 本文提出了一种基于超材料的太赫兹分波器,其结构单元由上下两层“一”字型金属线以及中间的石英介质构成。此分波器工作在太赫兹通信窗口,将中心频率为0.225 THz和0.300THz的两束太赫兹波分离,其隔离度分别为34 dB、47 dB,插入损耗分别为0.19 dB、0.04 dB,分波器的群延迟稳定。另外,也对分波器的等效参数以及结构参数变化进行了仿真分析。结果表明,所设计的太赫兹分波器具有插入损耗小、隔离度大、群延迟稳定等特点,且性能指标受参数变化的影响较小,在太赫兹通信系统中具有较好的应用前景。Abstract: This paper proposes a terahertz demultiplexer based on metamaterials; its unit cell is composed of two layers of "one" shaped metal wires and a quartz substrate in the middle. The terahertz demultiplexer works in the terahertz communication window and demultiplexes two beams of terahertz waves with center frequencies of 0.225 THz and 0.300 THz. The isolation of the terahertz demultiplexer is 34 dB and 47 dB, and its insertion loss is 0.19 dB and 0.04 dB, respectively. The group delay of the demultiplexer was relatively stable. Finally, the influence of the effective and structural parameters of the demultiplexer on its performance are discussed. This terahertz demultiplexer has low insertion loss, large isolation, and stable group delay, and its performance is less affected by parameter changes. It has significant application prospects in practical terahertz communication systems.
-
Keywords:
- terahertz /
- demultiplexer /
- metamaterial
-
-
[1] 赵亚军, 郁光辉, 徐汉青. 6G移动通信网络: 愿景、挑战与关键技术[J]. 中国科学: 信息科学, 2019, 49(8): 963-987. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201908003.htm ZHAO Yajun, YU Guanghui, XU Hanqing. 6G mobile communication network: vision, challenges and key technologies[J]. Science in China: Information Science, 2019, 49(8): 963-987. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201908003.htm
[2] 陈亮, 余少华. 6G移动通信发展趋势初探[J]. 光通信研究, 2019, 45(4): 1-2. https://www.cnki.com.cn/Article/CJFDTOTAL-GTXY201904001.htm XU Liang, YU Shaohua. Preliminary study on the development trend of 6G mobile communication[J]. Optical Communication Research, 2019, 45(4): 1-2. https://www.cnki.com.cn/Article/CJFDTOTAL-GTXY201904001.htm
[3] 莫秋燕, 吴家隐. 波分复用系统的研究综述[J]. 信息通信, 2019(7): 191-192. DOI: 10.3969/j.issn.1673-1131.2019.07.087 MO Qiuyan, WU Jiayin. Review of research on wavelength division multiplexing system[J]. Information and Communication, 2019(7): 191-192. DOI: 10.3969/j.issn.1673-1131.2019.07.087
[4] 孟宪浩. 密集波分复用系统中合波器/分波器的测试[J]. 电气化铁道, 2002(1): 41-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHD200201014.htm MENG Xianhao. Test of multiplexer/demultiplexer in dense wavelength division multiplexing system[J]. Electrified Railway, 2002(1): 41-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHD200201014.htm
[5] Yata M, Fujita M, Nagatsuma T. Photonic-crystal diplexers for terahertz- wave applications[J]. Optics Express, 2016, 24(7): 7835-7849. DOI: 10.1364/OE.24.007835
[6] LI Jiusheng, HAN L, LE Z. Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal[J]. Optics Communications, 2015, 350: 248-251. DOI: 10.1016/j.optcom.2015.04.034
[7] LI S, LIU H, SUN Q, et al. Multi-channel terahertz wavelength division demultiplexer with defects-coupled photonic crystal wave guide[J]. Journal of Modern Optics, 2016, 63(10): 955-960. DOI: 10.1080/09500340.2015.1111457
[8] Telecommunication Standardization Sector of ITU. Series G: Transmission Systems and Media, Digital Systems and Networks: ITU-T G695[S]. 2018.
[9] 丁涛, 刘占芳, 宋恺. 三维光子晶体的制备[J]. 化学进展, 2008, 20(9): 1283-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ200809005.htm DING Tao, LIU Zhanfang, SONG Kai. Fabrication of three- dimensional photonic crystals[J]. Chemical Progress, 2008, 20(9): 1283-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ200809005.htm
[10] ZHANG L, ZHANG S, LIU Y, et al. Broadband tunable frequency selective surface for steerable antenna applications[J]. IEEE Transactions on Antennas & Propagation, 2016, 64(12): 5496-5500. http://ieeexplore.ieee.org/document/7676371/
[11] Osipov A V. Minimum reflection properties of planar impedance- matched boundaries[J]. IEEE Transactions on Antennas & Propagation, 2014, 62(11): 5666-5670. http://ieeexplore.ieee.org/document/6891193/
[12] Lim J H, LIU T, Kim S S. Numerical analysis of complex impedance and microwave absorption of metamaterials composed of split cut wires on grounded dielectric substrate[J]. Applied Physics A, 2014, 117(3): 1401-1407. DOI: 10.1007/s00339-014-8562-5
[13] XIONG X, SUN W H, BAO Y J, et al. Switching the electric and magnetic responses in a metamaterial[J]. Physical Review B, 2009, 80(20): 2665-2668. http://adsabs.harvard.edu/abs/2010APS..MARB14013W
[14] Stojanović D B, Radovanović J, Milanović V. Influence of the geometry of terahertz chiral metamaterial on transmission group delays[J]. Optical and Quantum Electronics, 2016, 48(4): 272. DOI: 10.1007/s11082-016-0533-y
[15] 白胜元, 顾培夫, 刘旭, 等. 波分复用薄膜干涉窄带滤光片的设计[J]. 光学仪器, 2001(Z1): 114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYQ2001Z1022.htm BAI Shengyuan, GU Peifu, LIU Xu, at el. Design of WDM thin-film interference narrowband filter[J]. Optical Device, 2001(Z1): 114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYQ2001Z1022.htm
[16] Piran M J, Suh D Y. Learning-driven wireless communications, towards 6G[C]//2019 International Conference on Computing, Electronics & Communications Engineering(ICCECE), 2019: 219-224.
[17] Wakatsuchi H, Paul J, Greedy S, et al. Cut-wire metamaterial design based on simplified equivalent circuit models[J]. IEEE Transactions on Antennas & Propagation, 2012, 60(8): 3670-3678. http://ieeexplore.ieee.org/document/6204328/references?signout=success
[18] MIN L, HUANG L. Perspective on resonances of metamaterials[J]. Optics Express, 2015, 23(15): 19022. DOI: 10.1364/OE.23.019022