融合多重卷积和Dense Transformer的高光谱图像分类

Fusion of Multiple Convolution and Dense Transformer for Hyperspectral Image Classification

  • 摘要: 高光谱图像蕴含丰富的光谱空间信息。如何充分挖掘空谱信息进行分类,是一个关键的研究问题。在处理高光谱图像分类时,卷积擅长提取局部特征,Transformer能够捕获长距离特征依赖性,学习全局特征信息。针对卷积和Transformer的优势,提出了一种结合三维卷积、空间通道重建卷积和Transformer的高光谱图像分类方法。首先将降维后的图像块,利用三维卷积进行综合的空谱特征提取;随后用空间通道重建卷积过滤冗余信息;最后用具有密集连接的Transformer对卷积提取的空谱特征建立长距离依赖关系,并使用多层感知机进行分类。实验表明,该方法在Pavia University、Salinas和Botswana数据集上总体分类精度分别为99.51%、99.85%、97.57%,均表现优异。

     

    Abstract: Hyperspectral images contain rich spectral spatial information. Fully mining spatial-spectral information for classification is a key research problem. When dealing with hyperspectral image classification, convolution is effective in extracting local features, and the transformer can capture long-range feature dependencies and learn global feature information. A hyperspectral image classification method, combining 3D convolution, spatial channel reconstruction convolution, and Transformers is proposed by leveraging the advantages of convolution and Transformers. First, the image block after dimensionality reduction is used for comprehensive null spectral feature extraction using 3D convolution. Subsequently, spatial channel reconstruction convolution is used to filter the redundant information, and finally, a transformer with dense connectivity is used to establish long-range dependencies on the null spectral features extracted by convolution, classifying them using a multilayer perceptron. In experiments, the method performed well with overall classification accuracies of 99.51%, 99.85%, and 97.57% on the Pavia University, Salinas, and Botswana datasets, respectively.

     

/

返回文章
返回