Research Status of Infrared Thermography in NDT of FRP Composites/Thermal Barrier Coatings and Its Development
-
摘要: 红外热成像是具有非接触、检测面积大、检测结果直观等突出优势的新兴无损检测技术,近年来被广泛应用于金属、非金属、纤维增强复合材料(Fiber reinforced polymer,FRP)以及热障涂层等的无损检测与评价。本文首先简要介绍了红外热成像技术的基本原理和检测系统构成,特别是对光学、超声以及电磁等主要热激励形式的特点和优劣势进行了对比。然后,根据热激励形式的发展历程,详细介绍了光激励红外热成像技术在FRP复合材料和热障涂层无损检测与评价方面的研究现状与进展,重点关注了FRP复合材料/热障涂层热成像无损检测中的热难点问题。最后总结并展望了FRP复合材料/热障涂层红外热成像无损检测技术的未来发展趋势。Abstract: Infrared thermography is a new NDT technology with outstanding advantages such as non-contact, large detection area and intuitive detection results, and it has been widely used in NDT and evaluation of metal, non-metal, fiber reinforced polymer (FRP) and thermal barrier coatings. In this paper, the basic principle of infrared thermography technology and the composition of detection system are briefly introduced, especially the characteristics and advantages and disadvantages of optical, ultrasonic, and electromagnetic thermal excitation forms are compared. Then, according to the development history of thermal excitation forms, the research status and progress of optical excitation infrared thermography technology in the non-destructive testing and evaluation of FRP composites and thermal barrier coatings are introduced in detail, focusing on the hot and difficult problems in the non-destructive testing of FRP composites/thermal barrier coatings. Finally, the future development trend of infrared thermographic NDT technology for FRP composites/thermal barrier coatings is summarized and prospected.
-
Key words:
- nondestructive testing /
- infrared thermography /
- TBC /
- FRP composites /
- IR image processing
-
图 4 截断相关光热相干层析成像检测技术原理:(a) 截断相关光热相干层析成像数学实施;(b) 激光诱导热成像系统框图
Figure 4. Principle of truncated correlation photothermal coherence tomography(TC-PCT) detection technology: (a) Mathematical implementation of truncated correlation photothermal coherence tomography; (b) Block diagram of laser induced thermal imaging system
表 1 红外脉冲热成像、红外锁相热成像以及红外热波雷达成像检测技术的对比
Table 1. Comparison of infrared pulse thermography, infrared lock-in thermography, and infrared thermal wave radar techniques
Thermographic modality Excitation waveform form Advantage Shortcoming Application scope Infrared pulse thermography Fast detection speed, wide application range Shallow detection depth, large instantaneous energy, affected easily by the surface Impact damage and shallow defects Infrared lock-in thermography High signal-to-noise ratio, high sensitivity,
low surface requirementsBlind frequency phenomenon, multiple detection, low detection efficiency Deep defects Infrared thermal wave radar High signal-to-noise ratio, high resolution, large detection depth, low surface requirements, low energy, single reliable detection The detection time is slightly longer than pulse thermography, but much less than lock-in thermography Fast and reliable detection of deep defects -
[1] Clarke D R, Phillpot S R. Thermal barrier coatings materials[J]. Materials Today, 2005, 8(6): 22-29. doi: 10.1016/S1369-7021(05)70934-2 [2] 徐惠彬, 宫声凯, 刘福顺. 航空发动机热障涂层材料体系的研究[J]. 航空学报, 2000, 21(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200001002.htmXU Huibin, GONG Shengkai, LIU Fushun. Recent development in materials design of thermal barrier coating for gas turbine[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200001002.htm [3] Meier S M, Gupta D K. The evolution of thermal barrier coating in gas turbine engine applications[J]. Transaction of the ASME, 1994, 116(1): 205-257. [4] ZHAO Y X, LI D C, ZHONG X H, et al. Thermal shock behaviors of YSZ thick thermal barrier coatings fabricated by suspension and atmospheric plasma spraying[J]. Surface & Coatings Technology, 2014, 249: 48-55. [5] 郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 28(9-10): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB2009Z2002.htmGUO Hongbo, GONG Shengkai, XU Huibin. Progress in thermal barrier coatings for advanced aeroengines[J]. Materials China, 2009, 28(9-10): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB2009Z2002.htm [6] Steinberger R, Valadas Leitão T L, Ladstätter E, et al. Infrared thermographic techniques for non-destructive damage characterization of carbon fibre reinforced polymers during tensile fatigue testing[J]. International Journal of Fatigue, 2006, 28(10): 1340-1347. doi: 10.1016/j.ijfatigue.2006.02.036 [7] Suzuki Y, Todoroki A, Matsuzaki R, et al. Impact-damage visualization in CFRP by resistive heating: development of a new detection method for indentations caused by impact loads[J]. Composites Part A, 2012, 43(1): 53-64. doi: 10.1016/j.compositesa.2011.09.003 [8] Goidescu C, Welemane H, Garnier C, et al. Damage investigation in CFRP composites using full-field measurement techniques: combination of digital image stereo-correlation, infrared thermography and X-ray tomography[J]. Composites Part B, 2013, 48: 95-105. doi: 10.1016/j.compositesb.2012.11.016 [9] HE Y Z, TIAN G Y, PAN M C, et al. Impact evaluation in carbon fiber reinforced plastic(CFRP) laminates using eddy current pulsed thermography[J]. Composite Structures, 2014, 109(1): 1-7. [10] QU Z, JIANG P, ZHANG W X. Development and application of infrared thermography non-destructive testing techniques[J]. Sensors, 2020, 20: 3851. doi: 10.3390/s20143851 [11] Sophian A, TIAN G Y, Taylor D, et al. A feature extraction technique based on principal component analysis for pulsed eddy current NDT[J]. NDT & E International, 2003, 36(1): 37-41. [12] 郑凯, 江海军, 陈力. 红外热波无损检测技术的研究现状与进展[J]. 红外技术, 2018, 40(5): 401-411. http://hwjs.nvir.cn/article/id/hwjs201805001ZHENG Kai, JIANG Haijun, CHEN Li. Infrared thermography NDT and its development [J]. Infrared Technology, 2018, 40(5): 401-411. http://hwjs.nvir.cn/article/id/hwjs201805001 [13] Almond D P, Lau S K. Edge effects and a method of defect sizing for transient thermography[J]. Applied Physics Letters, 1993, 62(25): 3369-3371. doi: 10.1063/1.109074 [14] Maldague X, Marinetti S. Pulse phase infrared thermography[J]. Journal of Applied Physics, 1996, 79(5): 2694-2698. doi: 10.1063/1.362662 [15] Ludwig N, Teruzzi P. Heat losses and 3D diffusion phenomena for defect sizing procedures in video pulse thermography[J]. Infrared Physics & Technology, 2002, 43(3-5): 297-301. [16] Maldague X, Ziadi A, Klein M. Double pulse infrared thermography[J]. NDT & E International, 2004, 37: 559-564. [17] Meola C, Carlomagno G M. Impact damage in GFRP: new insights with infrared thermography[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(12): 1839-1847. doi: 10.1016/j.compositesa.2010.09.002 [18] Almond D P, Pickering S G. An analytical study of the pulsed thermography defect detection limit[J]. Journal of Applied Physics, 2012, 111: 093510. doi: 10.1063/1.4704684 [19] Azizinasab B, Hasanzadeh R P R, Hedayatrasa S, et al. Defect detection and depth estimation in CFRP through phase of transient response of flash thermography[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2364-2373. doi: 10.1109/TII.2021.3101492 [20] Rajic N. Principal component thermography for flaw contrast enhancement and flaw depth characterization in composite structures[J]. Composite Structures, 2002, 58(4): 521-528. doi: 10.1016/S0263-8223(02)00161-7 [21] Marinetti S, Finesso L, Marsilio E. Matrix factorization methods: application to thermal NDT/E[J]. NDT & E International, 2006, 39(8): 611-616. [22] Alvarez-Restrepo C A, Benitez-Restrepo H D, Tobón L E. Characterization of defects of pulsed thermography inspections by orthogonal polynomial decomposition[J]. NDT & E International, 2017, 91: 9-21. [23] Yousefi B, Sfarra S, Sarasini F, et al. Low-rank sparse principal component thermography (sparse-PCT): comparative assessment on detection of subsurface defects[J]. Infrared Physics & Technology, 2019, 98: 278-284. [24] 姜千辉, 姜长胜, 葛庆平, 等. 红外热波序列图像的图像分割与三维显示[J]. 无损检测, 2008, 30(2): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC200802011.htmJIANG Qianhui, JIANG Changsheng, GE Qingping, et al. Segmentation and 3D display of infrared thermal image[J]. Nondestructive Testing, 2008, 30(2): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC200802011.htm [25] DUAN Y X, Servais P, Genest M, et al. ThermoPoD: a reliability study on active infrared thermography for the inspection of composite materials[J]. Journal of Mechanical Science and Technology, 2012, 26(7): 1985-1991. doi: 10.1007/s12206-012-0510-8 [26] WU J Y, Sfarra S, Yao Y. Sparse principal component thermography for subsurface defect detection in composite products[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5594-5600. doi: 10.1109/TII.2018.2817520 [27] WEN C M, Sfarra S, Gargiulo G, et al. Thermographic data analysis for defect detection by imposing spatial connectivity and sparsity constraints in principal component thermography[J]. IEEE Transactions on Industrial Informatics, 2018, 17(6): 3901-3909. [28] LIU L, GAO B, WU S C, et al. Structured iterative alternating sparse matrix decomposition for thermal imaging diagnostic system[J]. Infrared Physics & Technology, 2020, 107: 103288. [29] Ahmed J, GAO B, Woo W, et al. Ensemble joint sparse low rank matrix decomposition for thermography diagnosis system[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2648-2658. doi: 10.1109/TIE.2020.2975484 [30] ZHANG X F, HE Y Z, Chady T, et al. CFRP impact damage inspection based on manifold learning using ultrasonic induced thermography[J]. IEEE Transactions on Industrial Informatics, 2019, 15(5): 2648-2659. doi: 10.1109/TII.2018.2866413 [31] SHEN P, LUO Z T, WANG S, et al. Feature detection of GFRP subsurface defects using fast randomized sparse principal component thermography[J]. International Journal of Thermophysics, 2022, 43: 160. doi: 10.1007/s10765-022-03076-z [32] Bates D, Smith G, LU D, et al. Rapid thermal non-destructive testing of aircraft components[J]. Composites Part B, 2000, 31(3): 175-185. doi: 10.1016/S1359-8368(00)00005-6 [33] Meola C, Carlomagno G M, Squillace A, et al. Non-destructive evaluation of aerospace materials with lock-in thermography[J]. Engineering Failure Analysis, 2006, 13(3): 380-388. doi: 10.1016/j.engfailanal.2005.02.007 [34] Pickering S, Almond D. Matched excitation energy comparison of the pulse and lock-in thermography NDE techniques[J]. NDT & E International, 2008, 41(7): 501-509. [35] Montanini R, Freni F. Non-destructive evaluation of thick glass fiber-reinforced composites by means of optically excited lock-in thermography[J]. Composites Part A, 2012, 43(11): 2075-2082. doi: 10.1016/j.compositesa.2012.06.004 [36] Lahiri B B, Bagavathiappan S, Reshmi P R, et al. Quantification of defects in composites and rubber materials using active thermography[J]. Infrared Physics & Technology, 2012(55): 191-199. [37] Oliveira B C F D, Nienheysen P, Baldo C R, et al. Improved impact damage characterization in CFRP samples using the fusion of optical lock-in thermography and optical square-pulse shearography images[J]. NDT & E international, 2020, 111: 102215. [38] 刘俊岩, 戴景民, 王扬. 红外图像序列处理的锁相热成像理论与试验[J]. 红外与激光工程, 2009, 38(2): 346-351. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200902043.htmLIU Junyan, DAI Jingmin, WANG Yang. Theory and experiment of IR lock-in thermography with image sequence processing [J]. Infrared and Laser Engineering, 2009, 38(2): 346-351. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200902043.htm [39] 刘俊岩, 戴景民, 王扬. 红外锁相法热波检测技术及缺陷深度测量[J]. 光学与精密工程, 2010, 18(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201001007.htmLIU Junyan, DAI Jingmin, WANG Yang. Thermal wave detection and defect depth measurement based on lock-in thermography [J]. Optics and Precision Engineering, 2010, 18(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201001007.htm [40] LIU J Y, WANG Y, DAI J M. Research on thermal wave processing of lock-in thermography based on analyzing image sequences for NDT[J]. Infrared Physics & Technology, 2010, 53(5): 348-357. [41] GONG J L, LIU J Y, WANG F, et al. Inverse heat transfer approach for nondestructive estimation the size and depth of subsurface defects of CFRP composite using lock-in thermography[J]. Infrared Physics & Technology, 2015, 71: 439-447. [42] LIU J Y, WANG F, LIU Y, et al. Inverse methodology for identification the thermal diffusivity and subsurface defect of CFRP composite by lock-in thermographic phase (LITP) profile reconstruction[J]. Composite Structures, 2016, 138: 214-226. doi: 10.1016/j.compstruct.2015.11.062 [43] CAO Y P, DONG Y F, CAO Y L, et al. Two-stream convolutional neural network for non-destructive subsurface defect detection via similarity comparison of lock-in thermography signals[J]. NDT & E International, 2020, 112: 102246. [44] DONG Y F, XIA C J, YANG J X, et al. Spatio-temporal 3-D residual networks for simultaneous detection and depth estimation of CFRP subsurface defects in lock-in thermography[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2571-2581. doi: 10.1109/TII.2021.3103019 [45] DONG Y F, ZHAO B W, YANG J X, et al. Two-stage convolutional neural network for joint removal of sensor noise and background interference in lock-in thermography[J]. NDT & E International, 2023, 137: 102816. [46] LUO Z T, LUO H, WANG S, et al. Enhanced CFRP defect detection from highly undersampled thermographic data via low-rank tensor completion-based thermography[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8641-8653. doi: 10.1109/TII.2022.3154786 [47] Tabatabaei N, Mandelis A. Thermal-wave radar: a novel subsurface imaging modality with extended depth-resolution dynamic range[J]. Review of Scientific Instruments, 2009, 80(3): 034902. doi: 10.1063/1.3095560 [48] Tabatabaei N, Mandelis A, Amaechi B T. Thermophotonic radar imaging: An emissivity-normalized modality with advantages over phase lock-in thermography[J]. Applied Physics Letters, 2011, 98(16): 163706. doi: 10.1063/1.3582243 [49] Mulaveesala R, Tuli S. Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection[J]. Applied Physics Letters, 2006, 89: 191913. doi: 10.1063/1.2382738 [50] Mulaveesala R, Vaddi J S, Singh P. Pulse compression approach to infrared nondestructive characterization[J]. Review of Scientific Instruments, 2008, 79(9): 094901. doi: 10.1063/1.2976673 [51] Tabatabaei N, Mandelis A. Thermal coherence tomography using match filter binary phase coded diffusion waves[J]. Physics Review Letters, 2011, 107: 165901. doi: 10.1103/PhysRevLett.107.165901 [52] Kaiplavil S, Mandelis A. Truncated-correlation photothermal coherence tomography for deep subsurface analysis[J]. Nature Photonics, 2014, 8(8): 635-642. doi: 10.1038/nphoton.2014.111 [53] Chatterjee K, Tuli S, Pickering S G, et al. A comparison of the pulsed, lock-in and frequency modulated thermography nondestructive evaluation techniques[J]. NDT & E International, 2011, 44(7): 655-667. [54] Giorleo G, Meola C. Comparison between pulsed and modulated thermography in glass–epoxy laminates[J]. NDT & E International, 2002, 35(5): 287-292. [55] Dua G, Arora V, Mulaveesala R. Defect detection capabilities of pulse compression based infrared non-destructive testing and evaluation[J]. IEEE Sensors Journal, 2020, 21(6): 7940-7947. [56] Rani A, Mulaveesala R. Novel pulse compression favorable excitation schemes for infrared non-destructive testing and evaluation of glass fibre reinforced polymer materials[J]. Composite Structures, 2022, 286: 115338. doi: 10.1016/j.compstruct.2022.115338 [57] Hedayatrasa S, Poelman G, Segers J, et al. Performance of frequency and/or phase modulated excitation waveforms for optical infrared thermography of CFRPs through thermal wave radar: a simulation study[J]. Composite Structures, 2019, 225: 111177. doi: 10.1016/j.compstruct.2019.111177 [58] Hedayatrasa S, Poelman G, Segers J, et al. Novel discrete frequency-phase modulated excitation waveform for enhanced depth resolvability of thermal wave radar[J]. Mechanical Systems and Signal Processing, 2019, 132: 512-522. doi: 10.1016/j.ymssp.2019.07.011 [59] Hedayatrasa S, Poelman G, Segers J, et al. On the application of an optimized frequency-phase modulated waveform for enhanced infrared thermal wave radar imaging of composites[J]. Optics and Lasers in Engineering, 2021, 138: 106411. doi: 10.1016/j.optlaseng.2020.106411 [60] GONG J L, LIU J Y, QIN L, et al. Investigation of carbon fiber reinforced polymer (CFRP) sheet with subsurface defects inspection using thermal-wave radar imaging (TWRI) based on the multi-transform technique[J]. NDT & E International, 2014, 62: 130-136. [61] WANG F, LIU J Y, LIU Y, et al. Research on the fiber lay-up orientation detection of unidirectional CFRP laminates composite using thermal-wave radar imaging[J]. NDT & E International, 2016, 84: 54-66. [62] WANG F, WANG Y H, LIU J Y, et al. Optical excitation fractional Fourier transform (FrFT) based enhanced thermal-wave radar imaging (TWRI)[J]. Optics Express, 2018, 26(17): 21403. doi: 10.1364/OE.26.021403 [63] YANG R Z, HE Y Z, Mandelis A, et al. Induction infrared thermography and thermal-wave-radar analysis for imaging inspection and diagnosis of blade composites[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5637-5647. doi: 10.1109/TII.2018.2834462 [64] WU S C, GAO B, YANG Y, et al. Halogen optical referred pulse-compression thermography for defect detection of CFRP[J]. Infrared Physics & Technology, 2019, 102: 103006. [65] LUO Z T, SHEN P, LUO H, et al. Advanced orthogonal frequency and phase modulated waveform for contrast-enhanced photothermal wave radar thermography[J]. Journal of Applied Physics, 2022, 131(22): 224903. doi: 10.1063/5.0087734 [66] GUO W, DONG L H, WANG H D, et al. Discriminate the substrate crack under sprayed coatings using ultrasonic infrared thermography[J]. Infrared Physics & Technology, 2019, 102(9): 103073. [67] GUO W, HUANG J K, ZHU J G, et al. Experimental investigation on detection of coating debonds in thermal barrier coatings using vibrothermography with a piezoceramic actuator[J]. NDT & E International, 2023, 137(7): 102859. [68] ZHU W Y, LIU Z W, JIAO D C, et al. Eddy current thermography with adaptive carrier algorithm for non-destructive testing of debonding defects in thermal barrier coatings[J]. Journal of Nondestructive Evaluation, 2018, 37: 31. doi: 10.1007/s10921-018-0483-3 [69] Cielo P, Dallaire S. Optothermal NDE of thermal-barrier coatings[J]. Journal of Materials Engineering, 1987, 9: 71-79. doi: 10.1007/BF02833789 [70] LIU H N, Sakamoto M, Kishi K, et al. Detection of defects in thermal barrier coatings by thermography analysis[J]. Materials Transactions, 2003, 44(9): 1845-1850. doi: 10.2320/matertrans.44.1845 [71] Shepard S M, Ahmed T, Rubadeux B A, et al. Synthetic processing of pulsed thermographic data for inspection of turbine components[J]. Insight-non-Destructive Testing and Condition Monitoring, 2001, 43(9): 587-589. [72] Shepard S M, Lhota J R, Rubadeux B A, et al. Reconstruction and enhancement of active thermographic image sequences[J]. Optical Engineering, 2003, 42(5): 1337-1342. doi: 10.1117/1.1566969 [73] Shepard S M, HOU Y L, Lhota J R, et al. Thermographic measurement of thermal barrier coating thickness[C]//Proceedings of SPIE, 2005, 5782: 407-410. [74] Marinetti S, Vavilov V, Bison P, et al. Quantitative infrared thermographic nondestructive testing of thermal barrier coatings[J]. Materials Evaluation, 2003, 61(6): 773-780. [75] Marinetti S, Robba D, Cernuschi F, et al. Thermographic inspection of TBC coated gas turbine blades: discrimination between coating over-thicknesses and adhesion defects[J]. Infrared Physics & Technology, 2007, 49(3): 281-285. [76] Cernuschi F, Marinetti S. Discrimination between over-thickness and delamination of thermal barrier coatings by apparent thermal effusivity thermographic technique[J]. Journal of Thermal Spray Technology, 2010, 19(5): 958-963. doi: 10.1007/s11666-010-9493-0 [77] Bison P, Cernuschi F, Grinzato E. In-depth and in-plane thermal diffusivity measurements of thermal barrier coatings by IR camera: evaluation of ageing[J]. International Journal of Thermophysics, 2008, 29(6): 2149-2161. doi: 10.1007/s10765-008-0421-1 [78] Cernuschi F, Bison P, Figari A, et al. Thermal diffusivity measurements by photothermal and thermographic techniques[J]. International Journal of Thermophysics, 2004, 25(2): 439-457. doi: 10.1023/B:IJOT.0000028480.27206.cb [79] Cernuschi F, Bison P, Marinetti S, et al. Thermal diffusivity measurement by thermographic technique for the non-destructive integrity assessment of TBCs coupons[J]. Surface and Coatings Technology, 2010, 205(2): 498-505. doi: 10.1016/j.surfcoat.2010.07.024 [80] Bison P, Cernuschi F, Capelli S. A thermographic technique for the simultaneous estimation of in-plane and in-depth thermal diffusivities of TBCs[J]. Surface and Coatings Technology, 2011, 205(10): 3128-3133. doi: 10.1016/j.surfcoat.2010.11.013 [81] Cernuschi F. Can TBC porosity be estimated by non-destructive infrared techniques? a theoretical and experimental analysis[J]. Surface and Coatings Technology, 2015, 272: 387-394. doi: 10.1016/j.surfcoat.2015.03.036 [82] Franke B, Sohn Y H, CHEN X, et al. Monitoring damage evolution in thermal barrier coatings with thermal wave imaging[J]. Surface and Coatings Technology, 2005, 200(5-6): 1292-1297. doi: 10.1016/j.surfcoat.2005.07.090 [83] Choi C, Choi S H, Kim J. Study for blade ceramic coating delamination detection for gas turbine[J]. International Journal of Modern Physics B, 2008, 22(31n32): 5699-5704. doi: 10.1142/S0217979208051030 [84] Schweda M, Beck T, Offermann M, et al. Thermographic analysis and modelling of the delamination crack growth in a thermal barrier coating on Fecralloy substrate[J]. Surface and Coatings Technology, 2013, 217: 124-128. doi: 10.1016/j.surfcoat.2012.12.002 [85] Schweda M, Beck T, Malzbender J, et al. Damage evolution of a thermal barrier coating system with 3-dimensional periodic interface roughness: effects of roughness depth, substrate creep strength and pre-oxidation[J]. Surface and Coatings Technology, 2015, 276: 368-373. doi: 10.1016/j.surfcoat.2015.06.046 [86] Tinsley L, Chalk C, Nicholls J, et al. A study of pulsed thermography for life assessment of thin EB-PVD TBCs undergoing oxidation ageing[J]. NDT & E International, 2017, 92: 67-74. [87] Ptaszek G, Cawley P, Almond D, et al. Artificial disbonds for calibration of transient thermography inspection of thermal barrier coating systems[J]. NDT & E International, 2012, 45(1): 71-78. [88] Ptaszek G, Cawley P, Almond D, et al. Transient thermography testing of unpainted thermal barrier coating (TBC) systems[J]. NDT & E International, 2013, 59: 48-56. [89] Ptaszek G. Investigation and development of transient thermography for detection of disbonds in thermal barrier coating systems[D]. Imperial College London, 2012. [90] Mezghani S, Perrin E, Vrabie V, et al. Evaluation of paint coating thickness variations based on pulsed infrared thermography laser technique[J]. Infrared Physics & Technology, 2016, 76: 393-401. [91] Unnikrishnakurup S, Dash J, Ray S, et al. Nondestructive evaluation of thermal barrier coating thickness degradation using pulsed IR thermography and THz-TDS measurements: a comparative study[J]. NDT & E International, 2020, 116: 102367. [92] 郭兴旺, 丁蒙蒙. 热障涂层红外热无损检测的建模和有限元分析[J]. 北京航空航天大学学报, 2009, 35(2): 174-178. doi: 10.13700/j.bh.1001-5965.2009.02.005GUO Xingwang, DING Mengmeng. Modeling and finite element analysis of thermal barrier coatings in IR NDT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 174-178. doi: 10.13700/j.bh.1001-5965.2009.02.005 [93] 郭兴旺, 丁蒙蒙. 热障涂层厚度及厚度不均热无损检测的数值模拟[J]. 航空学报, 2010, 31(1): 198-203. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201001031.htmGUO Xingwang, DING Mengmeng. Simulation of thermal NDT of thickness and its unevenness of thermal barrier coatings [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 198-203. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201001031.htm [94] ZHAO S B, ZHANG C L, WU N M, et al. Quality evaluation for air plasma spray thermal barrier coatings with pulsed thermography[J]. Progress in Natural Science: Materials International, 2011, 21(4): 301-306. doi: 10.1016/S1002-0071(12)60061-6 [95] ZHAO S B, WANG H M, WU N M, et al. Nondestructive testing of the fatigue properties of air plasma sprayed thermal barrier coatings by pulsed thermography[J]. Russian Journal of Nondestructive Testing, 2015, 51: 445-456. doi: 10.1134/S1061830915070074 [96] 刘颖韬, 牟仁德, 郭广平, 等. 热障涂层闪光灯激励红外热像检测[J]. 航空材料学报, 2015, 35(6): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201506014.htmLIU Yingtao, MAO Rende, GUO Guangping, et al. Infrared flash thermographic nondestructive testing of defects in thermal barrier coating [J]. Journal of Aeronautical Materials, 2015, 35(6): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201506014.htm [97] 陈林, 杨立, 范春利, 等. 基于相位的热障涂层厚度及其脱粘缺陷红外定量识别[J]. 红外与激光工程, 2015, 44(7): 2050-2056. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201507015.htmCHEN Lin, YANG Li, FAN Chunli, et al. Quantitative identification of coating thickness and debonding defects of TBC by pulse phase technology [J]. Infrared and Laser Engineering, 2015, 44(7): 2050-2056. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201507015.htm [98] BU C W, TANG Q J, LIU Y L, et al. Quantitative detection of thermal barrier coating thickness based on simulated annealing algorithm using pulsed infrared thermography technology[J]. Applied Thermal Engineering, 2016, 99: 751-755. doi: 10.1016/j.applthermaleng.2016.01.143 [99] TANG Q J, LIU J Y, DAI J M, et al. Theoretical and experimental study on thermal barrier coating (TBC) uneven thickness detection using pulsed infrared thermography technology[J]. Applied Thermal Engineering, 2017, 114: 770-775. doi: 10.1016/j.applthermaleng.2016.12.032 [100] TANG Q J, DAI J M, LIU J Y, et al. Quantitative detection of defects based on Markov-PCA-BP algorithm using pulsed infrared thermography technology[J]. Infrared Physics & Technology, 2016, 77: 144-148. [101] BU C W, SUN Z H, TANG Q J, et al. Thermography sequence processing and defect edge identification of TBC structure debonding defects detection using long-pulsed infrared wave non-destructive testing technology[J]. Russian Journal of Nondestructive Testing, 2019, 55: 80-87. doi: 10.1134/S1061830919010030 [102] 郭伟, 董丽虹, 王海斗, 等. 基于小波分解的热波相位特征提取及喷涂层厚度评价[J]. 红外与激光工程, 2017, 46(9): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201709014.htmGUO Wei, DONG Lihong, WANG Haidou, et al. Phase spectra extract of thermal wave with wavelet decomposition and coating thickness estimation[J]. Infrared and Laser Engineering, 2017, 46(9): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201709014.htm [103] 董丽虹, 郭伟, 王海斗, 等. 热障涂层界面脱粘缺陷的脉冲红外热成像检测[J]. 航空学报, 2019, 40(8): 422895. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201908024.htmDONG Lihong, GUO Wei, WANG Haidou, et al. Phase spectra extract of thermal wave with wavelet decomposition and coating thickness estimation [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 422895. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201908024.htm [104] GUO W, DONG L H, WANG H D, et al. Size estimation of coating disbonds using the first derivative images in pulsed thermography[J]. Infrared Physics & Technology, 2020, 104: 103106. [105] LIU Z W, JIAO D C, SHI W X, et al. Linear laser fast scanning thermography NDT for artificial debond defects in thermal barrier coatings[J]. Optics Express, 2017, 25(25): 31789. doi: 10.1364/OE.25.031789 [106] JIAO D C, LIU Z W, ZHU W Y, et al. Exact localization of debonding defects in thermal barrier coatings[J]. AIAA Journal, 2018, 56(9): 3691-3700. doi: 10.2514/1.J056806 [107] CHEN F, ZHANG K, JIANG H J, et al. Thickness evaluations for thin coatings using laser scanning thermography[J]. NDT & E International, 2023, 137(17): 102817. [108] JIAO D C, SHI W X, LIU Z W, et al. Laser multi-mode scanning thermography method for fast inspection of micro-cracks in TBCs surface[J]. Journal of Nondestructive Evaluation, 2018, 37: 30. doi: 10.1007/s10921-018-0485-1 [109] Shrestha R, Kim W. Evaluation of coating thickness by thermal wave imaging: a comparative study of pulsed and lock-in infrared thermography - Part Ⅰ: simulation[J]. Infrared Physics & Technology, 2017, 83: 124-131. [110] Shrestha R, Kim W. Evaluation of coating thickness by thermal wave imaging: a comparative study of pulsed and lock-in infrared thermography – Part Ⅱ: experimental investigation[J]. Infrared Physics & Technology, 2018, 92: 24-29. [111] ZHANG J Y, MENG X B, MA Y C. A new measurement method of coatings thickness based on lock-in thermography[J]. Infrared Physics & Technology, 2016, 76: 655-660. [112] TANG Q J, DAI J M, BU C W, et al. Experimental study on debonding defects detection in thermal barrier coating structure using infrared lock-in thermographic technique[J]. Applied Thermal Engineering, 2016, 107: 463-468. [113] SONG P, XIAO P, LIU J Y, et al. The inspection of coating thickness uniformity of SiC-coated carbon-carbon (C/C) composites by laser-induced thermal-wave imaging [J]. Carbon, 2019, 147: 348-356. [114] SHI L C, LONG Y, WANG Y Z, et al. Online nondestructive evaluation of TBC crack using infrared thermography[J]. Measurement Science and Technology, 2021, 32(11): 115008. [115] WANG F, LIU J Y, Mohummad O, et al. Research on debonding defects in thermal barrier coatings structure by thermal-wave radar imaging (TWRI)[J]. International Journal of Thermophysics, 2018, 39: 71. [116] LUO Z T, LUO H, WANG S, et al. The photothermal wave field and high-resolution photothermal pulse compression thermography for ceramic/metal composite solids[J]. Composite Structures, 2022, 282(4): 115069. -