基于多策略改进星鸦算法的多光谱辐射测温方法

Multispectral Radiation Temperature Measurement Method Based on MultiStrategy Improved Nutcracker Optimization Algorithm

  • 摘要: 传统多光谱辐射测温方法通常需要假设发射率模型,但实际材料的发射率通常呈现复杂和非规律性分布。复杂的发射率分布会导致反演精度不足等问题。针对以上问题,本研究提出一种融合多策略星鸦优化算法(information-sharing and golden-search augmented nutcracker optimization algorithm viaGood Point Set,ISGA-NOA)的多光谱辐射测温方法。无需预设发射率模型,通过构建约束优化模型将温度与发射率反演问题转化为约束条件下的非线性最优化问题,同时反演出真实温度与光谱发射率。该算法采用佳点集和镜面反射策略构建多样性初始种群;勘探两阶段融合黄金搜索算法与信息共享策略,建立参数自适应调节机制,有效提高全局探索与局部开发能力。选取CEC2022基准测试函数进行性能评估,验证该算法的有效性和可行性。并基于6种典型发射率模型的仿真实验,验证算法的鲁棒性。结果显示,在反演真温1000 K、1100 K和1200 K时的相对误差不超过1.18%。最后结合火箭发动机实测温度数据实验验证,温度反演相对误差不超过0.64%。通过性能测试与仿真实验,验证了该方法的有效性和工程适用性,为多光谱辐射测温技术提供了一种创新方法。

     

    Abstract: Traditional multispectral radiation thermometry typically requires assuming an emissivity model, but actual material emissivity often exhibits complex and irregular distributions. This complexity can lead to insufficient inversion accuracy. To address these issues, this study proposes a multispectral radiation thermometry method integrating a multi-strategy ISGA-NOA algorithm (Information-Sharing and GoldenSearch Augmented Nutcracker Optimization Algorithm via Good Point Set). Without requiring preset emissivity models, it converts the temperature and emissivity inversion problem into a constrained nonlinear optimization problem, simultaneously retrieving true temperature and spectral emissivity. The algorithm employs a good point set and specular reflection strategy to construct a diverse initial population. During the exploration phase, it integrates the golden section search algorithm with an information-sharing strategy, establishing a parameter adaptive adjustment mechanism to effectively enhance global exploration and local exploitation capabilities. Performance was evaluated using CEC2022 benchmark functions, confirming the algorithm's effectiveness and feasibility. Simulation experiments based on six typical emissivity models validated its robustness. Results show relative errors not exceeding 1.18% when inverting true temperatures of 1000 K, 1100 K, and 1200 K. Validation with measured temperature data from rocket engines yielded relative errors below 0.64%. Performance tests and simulations demonstrate the method's effectiveness and engineering applicability, offering an innovative approach for multispectral radiation thermometry.

     

/

返回文章
返回