基于轻型平台的多模态高分辨率高光谱目标检测系统

闫赟彬, 崔博伦, 杨婷婷, 李欣, 石志城, 段鹏飞, 宋梅萍, 练敏隆

闫赟彬, 崔博伦, 杨婷婷, 李欣, 石志城, 段鹏飞, 宋梅萍, 练敏隆. 基于轻型平台的多模态高分辨率高光谱目标检测系统[J]. 红外技术, 2023, 45(6): 582-591.
引用本文: 闫赟彬, 崔博伦, 杨婷婷, 李欣, 石志城, 段鹏飞, 宋梅萍, 练敏隆. 基于轻型平台的多模态高分辨率高光谱目标检测系统[J]. 红外技术, 2023, 45(6): 582-591.
YAN Yunbin, CUI Bolun, YANG Tingting, LI Xin, SHI Zhicheng, DUAN Pengfei, SONG Meiping, LIAN Minlong. Multi-modal High-Resolution Hyperspectral Object Detection System Based on Lightweight Platform[J]. Infrared Technology , 2023, 45(6): 582-591.
Citation: YAN Yunbin, CUI Bolun, YANG Tingting, LI Xin, SHI Zhicheng, DUAN Pengfei, SONG Meiping, LIAN Minlong. Multi-modal High-Resolution Hyperspectral Object Detection System Based on Lightweight Platform[J]. Infrared Technology , 2023, 45(6): 582-591.

基于轻型平台的多模态高分辨率高光谱目标检测系统

基金项目: 

民用航天项目 D0100206

详细信息
    作者简介:

    闫赟彬(1997-),男,硕士研究生,主要研究方向:空间遥感器总体设计。E-mail: yunbin418@163.com

    通讯作者:

    崔博伦(1988-),男,工程师,主要研究方向:高光谱载荷设计研制和高光谱遥感定量化反演。E-mail: boluncui@qq.com

  • 中图分类号: P237

Multi-modal High-Resolution Hyperspectral Object Detection System Based on Lightweight Platform

  • 摘要: 为解决无人机高光谱成像仪体积大,探测效率低等问题,提出了一种轻小型多模态高分辨率高光谱成像仪。文中主要介绍了高光谱成像仪光学系统设计,数据采集及实时处理模块。通过切换扫描模式满足光谱特性分析,目标检测等不同领域的探测模式需求。采用低畸变、高通量、紧凑型分光光学系统设计实现无人机平台对光谱成像仪的重量要求和探测精度要求。根据设计需求实现产品的加工同时进行了性能测试,其中,MTF达到0.19,光谱分辨率3.5~5.4 nm。通过检测多种流水线中的杂质验证系统对实时目标检测的能力。实现结果表明,系统能够实现每秒2048 pixel×2048 pixel场景的高精度光谱异常目标探测,探测精度优于87%。
    Abstract: To solve the problems of large volume and low detection efficiency of UAV hyperspectral imagers, a light and small multi-modal high-resolution hyperspectral imager is proposed. This study primarily introduces the optical system design, data acquisition, and real-time processing modules of the hyperspectral imager. The proposed imager satisfies the detection mode requirements in different fields, such as spectral characteristic analysis and target detection, by switching the scanning mode. A low distortion, high throughput, and compact spectroscopic optical system design is adopted to meet the weight and detection accuracy requirements of the UAV platform for the spectral imager. The product was processed according to the design requirements and the performance was tested simultaneously. Among these, the MTF reached 0.19 and spectral resolution was 3.5–5.4 nm. The ability of the system to detect real-time targets was verified through detection of impurities in various pipelines. The implementation results showed that the system achieved high-precision spectral anomaly target detection in 2048 pixel×2048 pixel scenes per second with a detection accuracy greater than 87%.
  • 红外遥感技术是一种通过探测目标所辐射或反射的红外辐射能量获取目标信息的遥感手段。根据斯蒂芬-玻尔兹曼定律,物体自身辐射的辐射通量密度与绝对温度的四次方成正比。对红外光学系统而言,通过降低光机系统温度来减少辐射强度能够有效提高探测灵敏度。

    鉴于低温光学在红外探测中的重要作用,自20世纪60年代以来,国外已经开展相关研究。例如,由美国研制的IRAS[1]采用全铍材料设计镜体与支撑结构,实现2~5 K温度下稳定成像;欧洲航天局(European space agency)研制的Herschel望远镜[2-3]光机结构都采用碳化硅材料,实现85 K低温成像;日本的AKARI望远镜[4-5]镜体由碳化硅材料制造,采用殷钢材料进行柔性设计,并通过3个bipod连接件将反射镜连接到背板上,实现35 K低温成像,面形指标为60 nm;目前正在研制的詹姆斯·韦伯空间望远镜(James Webb space telescope)[6-7]采用铍材料制作镜体,拟在7 K低温下成像。近些年,国内对低温反射镜支撑技术的研究也在逐渐展开,邱成波[8]采用SiC材料做反射镜镜体,支撑结构的材料选用殷钢,采用9点kindle支撑,通过柔性铰链与主动调整技术,在90 K低温下面形为39.595 nm;北京空间机电研究所的李晟[9]对低温碳化硅反射镜背部三点支撑与侧边三点支撑进行对比研究,同时确定了侧边三点支撑方式、支撑材料、热线胀系数对反射镜面形的影响。

    一般低温红外系统面形指标为30~60 nm,本文针对某后光路反射镜结构组件的面形指标为13 nm($\frac{\lambda}{50} @ \lambda=632.8 \mathrm{~nm} $),相对一般设计指标更为严苛。本文对240 K低温的ϕ450 mm圆形反射镜组件进行初步设计,并进一步优化分析各结构参量对反射镜自重与低温面形影响,根据分析结果选定设计参数,提高反射镜在低温240 K、光轴重力、径向重力工况下的面型精度与模态,且具备较高轻量化率。

    反射镜组件在加工制造装调时,处于常温重力工况,在轨工作时,处于微重力低温工况,反射镜受“重力释放”与环境温度变化影响,镜面面形发生变化,为保证反射镜在轨工作时面形表现,需对反射镜组件进行结构设计。最终设计结果应满足1g重力工况下RMS<13 nm,低温环境下RMS<13 nm,一阶模态>120 Hz,同时应尽量降低反射镜质量,减少发射成本。

    低温光学系统要求反射镜具有:优良的加工性能与良好的抛光度来保证镜面能够加工成型,足够的尺寸稳定性能够长时间保证反射镜面形,足够高的比刚度来提高轻量化率降低发射成本,高热导率使反射镜能够迅速降到工作温度并在环境温度变化时快速实现镜面温度平衡,较小的热线胀系数来减小反射镜镜体的热变形量,材料性能具有各向同性特别是热线胀系数。目前常见的空间反射镜材料包括碳化硅、硅、微晶玻璃、铝、铍、熔石英、超低膨胀玻璃(Ultra-low expansion glass, ULE),其力热性能见表 1[10]。碳化硅材料性能稳定、热线胀系数较小、导热率高、比刚度高、材料为各向同性,是良好的低温反射镜材料,同时国内碳化硅反射镜制备工艺成熟,因此本文选用碳化硅作为反射镜镜体材料。

    表  1  常用反射镜材料的性能和品质因数
    Table  1.  Performance and quality factors of rational materials for mirror
    Material Density ρ/(g/cm3) Young's modulus E/(GPa) Specific stiffness E/ρ(10-6·GNm/g) CTE α(10-6/K) Thermal conductivity λ/[W/(m·K)] Thermal distortion ratio λ/α(106 W/m)
    Fused silica 2.19 72 32.88 0.50 1.4 2.8
    Zerodur 2.53 91 35.97 0.05 1.64 32.8
    Al 2.70 68 25.19 22.50 167.00 7.42
    Be 1.85 287 155.14 11.40 216.00 18.95
    SiC 3.2 400 125.00 2.40 155.00 64.58
    Si 2.33 131 56.22 2.60 137.00 52.69
    ULE 2.21 67 30.32 0.01 1.31 131
    下载: 导出CSV 
    | 显示表格

    低温光学的首选是光机结构采用同一种材料实现无热化,能够极大降低结构设计难度及热控要求,但国内的高精度复杂碳化硅零件的成型加工技术还不够成熟,因此选择与反射镜材料热线胀系数相近的材料制造连接件,并对连接件进行柔性设计以减少对反射镜面形的影响。殷钢材料根据内部合金元素比例可以调节其热线胀系数,减小反射镜材料与连接件材料热线胀系数差,因此本文选用殷钢作为连接件材料。但材料热线胀系数随工艺、批次不同难以精准确定,殷钢热线胀系数的范围选定在(2.4±0.3)×10-6 K-1,以保证实际工程实践中热线胀系数在设计范围内。

    常见反射镜支撑方式有周边支撑、侧边支撑、背部多点支撑、背部单点支撑[9, 11-12]。背部多点支撑有利于保证重力工况下特别是光轴方向重力的反射镜面形,因此通常应用于中大口径反射镜。但背部多点支撑热适应性较差,低温时支撑点变形相互影响,难以保证低温反射镜面形精度。背部中心支撑结构简单、支撑刚度高,在低温工作时,背部中心支撑结构变形相对简单,能够避免多点支撑热变形导致的相互干涉,有效降低反射镜受支撑结构不均匀热应力所造成的面形变化[13]。因此本文采用背部单点支撑方式。

    根据Roberts实体反射镜设计经验公式:

    $$ \delta=\frac{3 \rho \mathrm{g} \Delta^{2} D^{2}}{256 E} $$ (1)

    式中:δ为最大自重变形,m;ρ为材料的密度,kg/m3g为重力加速度,m/s2D为反射镜直径,m;E为材料弹性模量,Pa;Δ为径厚比。计算径厚比为8.3,反射镜厚度为54 mm。本文结构背部支撑形式为背部开放式,并取厚度安全系数1.2,最终确定反射镜厚度为80 mm。

    三角形轻量化孔具有较高的刚度和较好的轻量化率,能够很好地保证反射镜面形,因此本文选用三角形轻量化形式。并对背部筋板做两次倒角处理,减轻反射镜边缘质量,提高光轴重力面形。

    综合以上,反射镜背部支撑方案如图 1

    图  1  反射镜背部结构
    Figure  1.  Support structure of mirror

    由于材料线胀系数不匹配,连接件与中心孔在无约束情况下低温变形量不一致。中心孔在径向发生较大变形,并引起光轴方向变形,从而影响反射镜面形,因此需要对连接件进行柔性设计。设计“己”字形柔性结构,释放径向压力,使连接件吸收大部分变形能,减小对反射镜面形影响。柔性连接件结构见图 2

    图  2  柔性连接件结构
    Figure  2.  Flexible connector structure

    在该结构中可将柔性支撑结构看作两组悬臂梁结合,根据悬臂梁均布载荷挠度公式:

    $$ \omega=\frac{-q l^{4}}{8 E I}=\frac{-q l^{4}}{8 E} \frac{12}{a^{3} b} $$ (2)

    式中:ω为悬臂结构挠度;q为均布载荷;L为柔性悬臂支撑结构的有效长度;ab分别为悬臂结构截面的厚度和宽度;I为截面惯性矩,$I=\frac{a^{3} b}{12} $。该公式不能用来准确计算“己”字结构挠度,但反映出随支撑壁长l变长、壁厚a变小、宽度b变小反射镜柔性结构挠度ω会变大,调节这些参数能够有效提高低温面形表现。但abl取值还需同时考虑重力面形、反射镜组件动力学性能与实际加工装调。

    将反射镜与连接件装配(见图 3),进行有限元仿真;并对另一组没有径向柔性设计的反射镜组件进行有限元仿真作为对比。仿真时,连接件热线胀系数取2.7×10-6 K-1

    图  3  反射镜装配图
    Figure  3.  Mirror assembly drawing

    分析结果见表 2,RMS-X、RMS-Z、RMS-T分别为径向重力面形、光轴方向重力面形、低温240 K面形。根据仿真结果能够看出,将连接件进行柔性设计能够有效减小在低温面形RMS值,也会导致重力面形变差。

    表  2  反射镜组件分析结果
    Table  2.  Analysis results of mirror and flexible connector nm
    Connection type RMS-X RMS-Z RMS-T
    Rigid 1.284 7.027 165.844
    Flexible 5.362 9.039 9.869
    下载: 导出CSV 
    | 显示表格

    对反射镜重力工况面形与低温面形有较大影响的主要参数有反射镜镜体高度、反射镜中心孔厚与直径、镜面背部与配合面距离、反射镜背部倒角高度、连接件柔性参数、筋板厚度等。各参数对反射镜面形变化影响程度不同,面形随相关参数变化趋势也不同。本文对相关参数进行了优化分析,重力与低温面形随各参数在一定范围内变化的趋势见图 4~图 8

    图  4  面形RMS随中心孔厚度变化趋势
    Figure  4.  Surface accuracy varying with hole thickness
    图  5  面形RMS随中心孔直径变化趋势
    Figure  5.  Surface accuracy varying with the diameter of hole
    图  6  面形RMS随镜面背部与配合面距离变化趋势
    Figure  6.  Surface accuracy varying with the distance between face back and mating surface
    图  7  面形RMS随倒角高度变化趋势
    Figure  7.  Surface accuracy varying with chamfer height
    图  8  面形RMS随镜体厚度变化趋势
    Figure  8.  Variation trend of surface accuracy varying with height of mirror

    反射镜背部支撑依靠连接件约束中心孔内壁,支撑住整个中心环,并依靠三角形分布的筋板均匀地控制住反射镜镜面,保持重力面形。增大中心孔厚度提高了中心孔的刚度,提升了重力面形表现。减小倒角高度提升了筋板的刚度,重力面形表现变好,但影响幅度较小。增加镜体高度整体提高了反射镜刚度,减小面形RMS。增大中心孔直径导致X方向面形变差,其主要原因在于随着中心孔变大,连接件对中心孔的约束效果变差,降低面形表现;Z向RMS先变小后变大,是因为增大中心孔使得支撑面与反射镜边缘距离减小,提高了对中心孔外圈镜面面形的控制,使得RMS减小,但随着中心孔直径增大,中心孔内圈镜面在重力下发生的坍塌成为影响面形的主要因素,导致RMS增大。随配合面与镜面背部距离变大,X重力面形变差且幅度较大,Z向面形小幅度提升,是因为在X向重力下,反射镜承受倾覆力矩,支撑面距离镜面越远,力矩越大,面形表现变差。

    本文中,低温无约束时,连接件变形大于中心孔变形,因此在实际结构中,中心孔内壁与连接件配合部分受径向拉力,引起中心孔壁径向与轴向变形。

    随着中心孔变厚,中心环刚度变高,低温变形对中心环影响减小,面形表现变好。

    根据热线胀系数之差计算公式:

    $$ \Delta \delta=R \times\left|\alpha_{\mathrm{SiC}}-\alpha_{\mathrm{Invar}}\right| \times \Delta T $$ (3)

    式中:Δδ为热线胀系数变形差值;R为中心孔半径;αSiCαInvar为碳化硅与殷钢热线胀系数;ΔT为温度差。可以看出随着中心孔直径变大,自由变形差值越大,中心环变形越大,面形表现变差。

    随配合面与镜面背部距离h增大,低温面形先变小后变大。这是因为轴向变形使内圈面形凹陷,径向变形导致的内圈面形凸出,h较小时,配合面距离镜面近,轴向变形导致的面形变化占据主导地位,随着h变大,径向变形导致的面形变化逐渐占据主导地位,所以h增大会使面形先变小后变大。

    根据优化曲线,参数选取见表 3,反射镜优化后性能见表 4

    表  3  优化参数取值
    Table  3.  Optimize parameter values  mm
    Parameters Height of mirror Diameter of hole Hole thickness Distance between face back and mating surface Chamfer height
    Initial 80 110 10 12 8
    Final 80 100 12 10 10
    下载: 导出CSV 
    | 显示表格
    表  4  优化后反射镜性能
    Table  4.  Optimized mirror performance
    RMS-X/nm RMS-Z/nm RMS-T/nm First order frequency/Hz Light weight rate
    3.710 8.585 5.086 277 89.4%
    下载: 导出CSV 
    | 显示表格

    针对工作于240 K低温环境的ϕ450 mm圆形反射镜组件,本文选用碳化硅材料做反射镜镜体,殷钢材料做连接件,初步设计反射镜与柔性连接件,并进一步优化反射镜相关参数,实现低温240 K时反射镜面形RMS为5.086 nm,光轴重力面形为8.585 nm,径向重力面形3.710 nm,模态277 Hz,轻量化率89.4%。在优化过程中得到反射镜镜体高度、反射镜中心孔厚与直径、镜面背部与配合面距离、反射镜背部倒角高度对面形的影响曲线,对低温反射镜结构设计具有参考意义。

  • 图  1   轻小型高光谱成像仪系统架构设计

    Figure  1.   Compact hyperspectral imager system architecture

    图  2   高光谱成像仪扫描模式设计图

    Figure  2.   Imaging spectrometer scanning mode design

    图  3   扫描模块结构设计

    Figure  3.   Scanning module structure design

    图  4   光学系统结构

    Figure  4.   Optical system structure diagram

    图  5   光学系统典型波长MTF

    Figure  5.   Optical system typical wavelength MTF

    图  6   数据采集与实时处理模块结构

    Figure  6.   Structure diagram of data acquisition and real-time processing module

    图  7   光谱异常提取算法架构

    Figure  7.   The architecture of pectral anomaly extraction algorithm

    图  8   基于二维奇异谱分解的高光谱非监督分类算法架构

    Figure  8.   Architecture of hyperspectral unsupervised classification algorithm based on 2DSSA

    图  9   光谱探测信噪比

    Figure  9.   Spectral probe signal-to-noise ratio

    图  10   轻小型高光谱成像仪外观

    Figure  10.   Appearance of a light and small hyperspectral imager

    图  11   中心视场靶标影像

    Figure  11.   Central field of view target image

    图  12   光谱响应拟合曲线

    Figure  12.   Spectral response fitting curves

    图  13   实验场景图

    Figure  13.   Experimental scene

    图  14   未知杂质类型检测结果

    Figure  14.   Detection results of unknown impurity type

    表  1   常用无人机平台光谱仪

    Table  1   Commonly used UAV platform spectrometer

    Manufacturers Project Spectral region/μm Spectral resolution /nm Pixel elements /pixel Field angle/° Mass/kg
    Specim FX10 0.4-1.0 5.5 b 1024 38c 1.26 d
    FX17 0.9-1.7 8 b 640 1.7 d
    Headwall Nano HyperSpec 0.4-1.0 6 b 640 17c 1.2 d
    Micro HyperSpec 0.4-1.0 5.8 b 1600 34c 3.9 d
    Resonon Pika L 0.4-1.0 3.3 b 900 13c 1.59 e
    Pika XC2 0.4-1.0 1.9 b 1600 23c 3.37 e
    Pika IR+ 0.9-1.7 5.6 b 640 21c 4.31 e
    HySpex Mjolnir V-1024 0.4-1.0 3 a 1024 20c 4 d
    Mjolnir S-620 0.97-2.5 5.1 a 620 4.5 d
    Note:a Spectral sampling interval. b Full width of spectral response function at half maximum. c FOV at common focal length.
    d Lens and image acquisition system not included. e Including image acquisition system.
    下载: 导出CSV

    表  2   光学系统设计指标

    Table  2   Optical system design indexes

    Parameters Indexes
    Spectrum range /μm 0.4~1.0
    F number 2.4
    Focal length /mm 25
    FOV/° 25
    Scanning angle /° -20~20
    Spectral resolution /nm 5
    Spectral sampling interval/nm 2.5
    Slits size 11.3 mm×0.09 μm
    Diffraction order -1
    MTF ≥0.45
    下载: 导出CSV

    表  3   不同场景下的成像条件

    Table  3   Imaging conditions in different scenes

    Surface reflection characteristic Solar zenith angle/°
    Forest 30
    Soil 30
    Albedo0.3 30
    Albedo0.3 45
    Albedo0.3 60
    下载: 导出CSV

    表  4   未知杂质类型时各杂质检测准确率

    Table  4   The detection accuracy of each impurity when the impurity type is unknown

    Impurity number Impurity type Impurity image Textual algorithm RXD
    Detection accuracy rate Detection accuracy rate
    1 White plastic 14 14 100% 14 100%
    2 Green plastic 13 12 92% 11 85%
    3 Blue plastic 11 9 82% 10 91%
    4 Cardboard 10 10 100% 9 90%
    5 Yellow plastic 14 9 64% 10 71%
    6 Bits of wood 12 10 83% 9 75%
    7 Froth 17 15 88% 13 76%
    8 Grey cardboard 14 13 93% 13 93%
    9 Red plastic 14 13 93% 14 100%
    10 Hemp rope 11 9 82% 8 73%
    Average - - 87% - 85%
    下载: 导出CSV

    表  5   已知杂质类型时各杂质检测准确率

    Table  5   The detection accuracy of each impurity when the impurity type is known

    Impurity number Impurity type Impurity image No impurity image Textual algorithm RXD algorithm
    Detection Accuracy rate False detection Rate for error detection Detection Accuracy rate False detection Rate for error detection
    1 White plastic 10 730 10 100% 68 9.32% 10 100% 59 8.08%
    2 Green plastic 10 730 10 100% 11 1.51% 10 100% 34 4.67%
    3 Blue plastic 10 730 10 100% 66 9.04% 10 100% 63 8.63%
    4 Cardboard 10 730 10 100% 72 9.86% 9 90% 68 9.32%
    5 Yellow plastic 10 730 10 100% 10 1.37% 10 100% 27 3.70%
    6 Bits of wood 10 730 10 100% 69 9.45% 10 100% 65 8.90%
    7 Froth 9 731 9 100% 67 9.17% 9 100% 56 7.67%
    8 Grey cardboard 10 730 10 100% 68 9.32% 10 100% 75 10.27%
    9 Red plastic 10 730 10 100% 43 5.89% 10 100% 31 4.25%
    10 Hemp rope 10 730 6 60% 80 10.96% 7 70% 95 13.01%
    - Average - - - 96% - 7.59% - 96% - 7.85%
    下载: 导出CSV
  • [1]

    Cocks T, Jenssen R, Stewart A, et al. The HyMap airborne hyperspectral sensor: the system, calibration and performance[C]//Proc. 1st EARSeL Workshop on Imaging Spectroscopy, 1998: 37-42.

    [2]

    Babey S K, Anger C D. Compact airborne spectrographic imager (CASI)[C]//Imaging Spectrometry of the Terrestrial Environment, 1930, DOI: 10.1117/12.157052.

    [3]

    Ulbrich G J, Meynart R, Nieke J. APEX-airborne prism experiment: the realization phase of an airborne hyperspectral imager[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2004, 5570: 453-459.

    [4]

    Hamlin L, Green R O, Mouroulis P, et al. Imaging spectrometer science measurements for Terrestrial Ecology: AVIRIS and new developments[C]//Aerospace Conference. IEEE, 2011: 1-7.

    [5]

    Pullanagari R R, Kereszturi G, Yule I J. Quantification of dead vegetation fraction in mixed pastures using AisaFENIX imaging spectroscopy data[J]. International Journal of Applied Earth Observation & Geoinformation, 2017, 58: 26-35.

    [6]

    WANG Y. Wide-field-of-view visible and near infrared pushbroom airborne hyperspectral imager (Conference Presentation)[C]// Infrared Technology and Applications XLIV, 2018, 10624: 15-19.

    [7]

    Horstrand P, Guerra R, Rodriguez A, et al. A UAV platform based on a hyperspectral sensor for image capturing and on-board processing[J]. IEEE Access, 2019, 7: 66919-66938. DOI: 10.1109/ACCESS.2019.2913957.

    [8]

    QIN Jianwei, CHAO Kuanglin, Moon S Kim, et al. Hyperspectral and multispectral imaging for evaluating food safety and quality[J]. Journal of Food Engineering, 2013, 118(2): 157-171. DOI: 10.1016/j.jfoodeng.2013.04.001

    [9]

    Barreto M, Johansen K, Angel Y, et al. Radiometric assessment of a UAV-Based push-broom hyperspectral camera[J]. Sensors, 2019, 19(21): 4699. DOI: 10.3390/s19214699

    [10]

    Malenovsky Z, Lucieer A, Robinson S A, et al. Ground-based imaging spectroscopy data for estimation of Antarctic moss relative vigour from remotely sensed chlorophyll content and leaf density at ASPA[J]. Environmental Science, 2015, DOI: 10.4225/15/555C1DB80CB70.

    [11]

    Kanning M, I Kühling, Trautz D, et al. High-resolution UAV-based hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield prediction[J]. Remote Sensing, 2018, 10(12): 2000. DOI: 10.3390/rs10122000

    [12]

    ZHU C, Kanaya Y, Tsuchiya M, et al. Optimization of a hyperspectral imaging system for rapid detection of microplastics down to 100 m[J]. Methods X, 2021, 8: 101175.

    [13]

    Lenhard, Karim, Schwarzmaier, et al. Independent laboratory character-rization of NEO HySpex imaging spectrometers VNIR-1600 and SWIR-320m-e[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 1828-1841. DOI: 10.1109/TGRS.2014.2349737

    [14]

    Blaaberg S, T Løke, Baarstad I, et al. A next generation VNIR-SWIR hyperspectral camera system: HySpex ODIN-1024[C]//Electro-optical & Infrared Systems: Technology & Applications XI. International Society for Optics and Photonics, 2014, DOI: 10.1117/12.2067497.

    [15]

    Telmo A, Hruka Joná, Pádua Luís, et al. Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry[J]. Remote Sensing, 2017, 9(11): 1110. DOI: 10.3390/rs9111110

    [16]

    Nex F, Armenakis C, Cramer M, et al. UAV in the advent of the twenties: Where we stand and what is next[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184: 215-242. DOI: 10.1016/j.isprsjprs.2021.12.006

    [17] 刘银年. "高分五号"卫星可见短波红外高光谱相机的研制[J]. 航天返回与遥感, 2018, 39(3): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803004.htm

    LIU Y N. Visible-shortwave infrared hyperspectral imager of GF-5 satellite[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(3): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803004.htm

    [18]

    Stefano P, Angelo P, Simone P, et al. The PRISMA hyperspectral mission: Science activities and opportunities for agriculture and land monitoring[C]//Geoscience & Remote Sensing Symposium. IEEE, 2014: 4558-4561.

    [19]

    Iwasaki A, Tanii J, Kashimura O, et al. Prelaunch status of hyperspectral imager suite (Hisui)[C]//IEEE International Geoscience and Remote Sensing Symposium, 2019: 5887-5890.

    [20] 郭俊先. 基于高光谱成像技术的棉花杂质检测方法的研究[D]. 杭州: 浙江大学, 2011.

    GUO J X. Study on Detection of Cotton Trashes by Hyperspectral Imaging[D]. Hangzhou: Zhejiang University, 2011.

    [21] 汪瑶. 用于工业分拣的高光谱智能相机研究[D]. 合肥: 中国科学技术大学, 2012.

    WANG Y. Research on Hyperspectral Smart Camera for Industrial Sorting[D]. Heifei: University of Science and Technology of China, 2012.

    [22]

    Faqeerzada M A, Lohumi S, Kim G, et al. Hyperspectral shortwave infrared image analysis for detection of adulterants in almond powder with one-class classification method[J]. Sensors, 2020, 20(20): 5855. DOI: 10.3390/s20205855

    [23]

    YU F H, BAI J C, JIN Z Y, et al. Research on precise fertilization method of rice tillering stage based on UAV hyperspectral remote sensing prescription map[J]. Agronomy, 2022, 12(11): 2893. DOI: 10.3390/agronomy12112893

    [24]

    LIU X M, WANG H C, CAO Y W, et al. Comprehensive growth index monitoring of desert steppe grassland vegetation based on UAV hyperspectral[J]. Front Plant Sci. , 2023, 13: 1050999. DOI: 10.3389/fpls.2022.1050999.

    [25]

    Resonon Inc. Hyperspectral Imaging Solutions[EB/OL]. [2023-06-12]. https://resonon.com.

    [26] 李岩, 马越. 扫描线校正器校正量的实验室测试方法[J]. 航天返回与遥感, 2014, 35(2): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201402009.htm

    LI Y, MA Y. The laboratory scan line corrector test method[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(2): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201402009.htm

    [27]

    ZENG Y, HAO D, Huete A, et al. Optical vegetation indices for monitoring terrestrial ecosystems globally[J]. Nature Reviews Earth & Environment, 2022(3): 477-493.

    [28]

    WANG Y, WANG L, YU C, et al. Constrained-target band selection for multiple-target detection[J]. IEEE transactions on geoscience and remote sensing: a publication of the IEEE Geoscience and Remote Sensing Society, 2019: 6079-6103, DOI: 10.1109/TGRS.2019.2904264.

    [29]

    Zabalza J, QING C, YUEN P, et al. Fast implementation of two-dimensional singular spectrum analysis for effective data classification in hyperspectral imaging[J]. Journal of the Franklin Institute, 2018, 355(4): 1733-1751. DOI: 10.1016/j.jfranklin.2017.05.020

    [30]

    Berk A, Anderson G P, Acharya P K, et al. MODTRAN (TM) 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2005, 5806: 662-667.

图(14)  /  表(5)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  53
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-21
  • 修回日期:  2023-04-27
  • 刊出日期:  2023-06-19

目录

/

返回文章
返回