基于潜在低秩表示的红外和可见光图像融合

Infrared and Visible Image Fusion Based on Latent Low-Rank Representation

  • 摘要: 红外和可见光图像融合广泛应用于目标跟踪、检测和识别等领域。为了保留细节的同时增强对比度,本文提出一种基于潜在低秩表示的红外和可见光图像融合方法。潜在低秩分解将源图像分解为基层和显著层,其中基层包含主要内容和结构信息,显著层包含能量相对集中的局部区域。进一步利用比例金字塔分解得到低频和高频的基层子带,并针对不同层的特点设计对应的融合规则。利用稀疏表示表达低频基层较分散的能量,设计L1范数最大和稀疏系数最大规则,加权平均融合策略保留不同的显著特征;绝对值最大增强高频基层的对比度信息;而显著层则利用局部方差度量局部显著性,加权平均方式突出对比度较强的目标区域。在TNO数据集上的定性和定量实验分析表明方法具有良好的融合性能。基于低秩分解的方法能够增强红外和可见光融合图像中目标对比度的同时保留了丰富的细节信息。

     

    Abstract: Infrared and visible image fusion is widely used in target tracking, detection, and recognition. To preserve image details and enhance contrast, this study proposed an infrared and visible image fusion method based on latent low-rank representation. The latent low-rank representation was used to decompose the source images into base and significant layers, in which the base layers contained the main content and structure information, and the salient layers contained the local area with relatively concentrated energy. The ratio of low-pass pyramid was also adopted to decompose the base layer into low-frequency and high-frequency layers. The corresponding fusion rules were designed according to the characteristics of the different layers. A sparse representation was used to express the relatively dispersed energy of the low-frequency base, and the rules of the maximum L1 norm and maximum sparse coefficient were weighted averages to retain different significant features. The absolute value of the high-frequency part of the base layer was used to enhance the contrast. Local variance was used for the salient layer to measure significance, and the weighted average was used to highlight the target area with enhanced contrast. Experimental results on the TNO datasets show that the proposed method performed well in both qualitative and quantitative evaluations. The method based on low-rank decomposition can enhance the contrast of the targets and retain rich details in infrared and visible fusion images.

     

/

返回文章
返回