留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外与可见光图像注意力生成对抗融合方法研究

武圆圆 王志社 王君尧 邵文禹 陈彦林

武圆圆, 王志社, 王君尧, 邵文禹, 陈彦林. 红外与可见光图像注意力生成对抗融合方法研究[J]. 红外技术, 2022, 44(2): 170-178.
引用本文: 武圆圆, 王志社, 王君尧, 邵文禹, 陈彦林. 红外与可见光图像注意力生成对抗融合方法研究[J]. 红外技术, 2022, 44(2): 170-178.
WU Yuanyuan, WANG Zhishe, WANG Junyao, SHAO Wenyu, CHEN Yanlin. Infrared and Visible Image Fusion Using Attention- Based Generative Adversarial Networks[J]. Infrared Technology , 2022, 44(2): 170-178.
Citation: WU Yuanyuan, WANG Zhishe, WANG Junyao, SHAO Wenyu, CHEN Yanlin. Infrared and Visible Image Fusion Using Attention- Based Generative Adversarial Networks[J]. Infrared Technology , 2022, 44(2): 170-178.

红外与可见光图像注意力生成对抗融合方法研究

基金项目: 

山西省面上自然基金项目 201901D111260

信息探测与处理山西省重点实验室开放研究基金 ISTP2020-4

太原科技大学博士启动基金 20162004

详细信息
    作者简介:

    武圆圆(1997-)女,硕士研究生,研究方向为光学测控技术与应用。E-mail:yywu321@163.com

    通讯作者:

    王志社(1982-)男,副教授,博士,研究方向为红外图像处理、机器学习和信息融合。E-mail:wangzs@tyust.edu.cn

  • 中图分类号: TP391.4

Infrared and Visible Image Fusion Using Attention- Based Generative Adversarial Networks

  • 摘要: 目前,基于深度学习的融合方法依赖卷积核提取局部特征,而单尺度网络、卷积核大小以及网络深度的限制无法满足图像的多尺度与全局特性。为此,本文提出了红外与可见光图像注意力生成对抗融合方法。该方法采用编码器和解码器构成的生成器以及两个判别器。在编码器中设计了多尺度模块与通道自注意力机制,可以有效提取多尺度特征,并建立特征通道长距离依赖关系,增强了多尺度特征的全局特性。此外,构建了两个判别器,以建立生成图像与源图像之间的对抗关系,保留更多细节信息。实验结果表明,本文方法在主客观评价上都优于其他典型方法。
  • 图  1  本文方法网络结构

    Figure  1.  The network architecture of our method

    图  2  Res2Net结构

    Figure  2.  The architecture of Res2Net

    图  3  通道自注意力结构

    Figure  3.  The architecture of channel-self-attention

    图  4  “Nato_camp”实验结果

    Figure  4.  The experimental results of "Nato_camp"

    图  5  “helicopter”实验结果

    Figure  5.  The experimental results of "helicopter"

    图  6  “bench”实验结果

    Figure  6.  The experimental results of "bench"

    图  7  “Movie_18”实验结果

    Figure  7.  The experimental results of "Movie_18"

    图  8  “TNO”数据集定量评价指标

    Figure  8.  Quantitative comparisons of on "TNO" dataset

    图  9  “example 1”实验结果

    Figure  9.  The experimental results of "example 1"

    图  10  “example 2”实验结果

    Figure  10.  The experimental results of "example 2"

    图  11  “Roadscene”数据集定量评价指标

    Figure  11.  Quantitative comparisons of on "Roadscene" dataset

    表  1  生成器参数设置

    Table  1.   Parameter setting of the generator

    Parts Layer Kernel size/stride Input channel/ Output channel, activation
    Encoder C0 3×3/1 1/16, LeakyReLU
    Res2Net1 - 16/32, LeakyReLU
    Res2Net2 - 32/64, LeakyReLU
    Decoder C1 3×3/1 128/64, LeakyReLU
    C2 3×3/1 64/32, LeakyReLU
    C3 3×3/1 32/16, LeakyReLU
    C4 3×3/1 16/1, Tanh
    下载: 导出CSV

    表  2  判别器参数设置

    Table  2.   Parameter setting of the discriminators

    Layer Kernel size/stride Input channel/Output channel, activation
    L1 3×3/2 1/16, LeakyReLU
    L2 3×3/2 16/32, LeakyReLU
    L3 3×3/2 32/64, LeakyReLU
    L4 3×3/2 64/128, LeakyReLU
    L5(FC(1)) - 128/1, Tanh
    下载: 导出CSV

    表  3  消融实验的定量比较

    Table  3.   Quantitative analysis of ablation experiment

    Methods EN SD CC SCD MS-SSIM VIFF
    No-CA 7.2439 42.6525 0.6305 1.7705 0.9221 0.5149
    No-Res2Net 7.3372 46.2277 0.6295 1.8453 0.9227 0.5572
    Ours 7.3596 46.9659 0.6290 1.8494 0.9278 0.5683
    下载: 导出CSV

    表  4  时间计算率比较

    Table  4.   Comparison of time efficiency

    Methods TNO Roadscene
    CVT 1.33 0.92
    ASR 332.21 165.23
    WLS 2.23 1.17
    DenseFuse 0.11 0.08
    FusionGan 1.98 1.02
    IFCNN 0.08 0.07
    Ours 0.23 0.19
    下载: 导出CSV
  • [1] MA J, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. doi:  10.1016/j.inffus.2018.02.004
    [2] LI S, KANG X, FANG L, et al. Pixel-level image fusion: a survey of the state of the art[J]. Information Fusion, 2017, 33: 100-112. doi:  10.1016/j.inffus.2016.05.004
    [3] LIU Y, CHEN X, WANG Z, et al. Deep learning for pixel-level image fusion: Recent advances and future prospects[J]. Information Fusion, 2018, 42: 158-173. doi:  10.1016/j.inffus.2017.10.007
    [4] LI S, YANG B, HU J. Performance comparison of different multi-resolution transforms for image fusion[J]. Information Fusion, 2011, 12(2): 74-84. doi:  10.1016/j.inffus.2010.03.002
    [5] ZHANG Q, LIU Y, Rick S Blum, et al. Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: a review[J]. Information Fusion, 2018, 40: 57-75. doi:  10.1016/j.inffus.2017.05.006
    [6] ZHANG Xiaoye, MA Yong, ZHANG Ying, et al. Infrared and visible image fusion via saliency analysis and local edge-preserving multi-scale decomposition[J]. Journal of the Optical Society of America A Optics Image Science & Vision, 2017, 34(8): 1400-1410.
    [7] YU L, LIU S, WANG Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. doi:  10.1016/j.inffus.2014.09.004
    [8] HAN J, Pauwels E J, P De Zeeuw. Fast saliency-aware multimodality image fusion[J]. Neurocomputing, 2013, 111: 70-80. doi:  10.1016/j.neucom.2012.12.015
    [9] YIN Haitao. Sparse representation with learned multiscale dictionary for image fusion[J]. Neurocomputing, 2015, 148: 600-610. doi:  10.1016/j.neucom.2014.07.003
    [10] WANG Zhishe, YANG Fengbao, PENG Zhihao, et al. Multi-sensor image enhanced fusion algorithm based on NSST and top-hat transformation[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(23): 4184-4190. doi:  10.1016/j.ijleo.2015.08.118
    [11] CUI G, FENG H, XU Z, et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J]. Optics Communications, 2015, 341: 199-209. doi:  10.1016/j.optcom.2014.12.032
    [12] LI Q, LU L, LI Z, et al. Coupled GAN with relativistic discriminators for infrared and visible images fusion[J]. IEEE Sensors Journal, 2021, 21(6): 7458-7467. doi:  10.1109/JSEN.2019.2921803
    [13] LIU Y, CHEN X, CHENG J, et al. Infrared and visible image fusion with convolutional neural networks[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2018, 16(3): 1850018. doi:  10.1142/S0219691318500182
    [14] LI H, WU X J. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2019, 28(5): 2614-2523. doi:  10.1109/TIP.2018.2887342
    [15] XU H, MA J, JIANG J, et al. U2Fusion: A unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(1): 502-518.
    [16] HOU R. VIF-Net: an unsupervised framework for infrared and visible image fusion[J]. IEEE Transactions on Computational Imaging, 2020, 6: 640-651. doi:  10.1109/TCI.2020.2965304
    [17] HUI L A, XJW A, JK B. RFN-Nest: An end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 73: 72-86. doi:  10.1016/j.inffus.2021.02.023
    [18] MA J, WEI Y, LIANG P, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. doi:  10.1016/j.inffus.2018.09.004
    [19] JM A, Pl A, WEI Y A, et al. Infrared and visible image fusion via detail preserving adversarial learning[J]. Information Fusion, 2020, 54: 85-98. doi:  10.1016/j.inffus.2019.07.005
    [20] MA J, XU H, JIANG J, et al. DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4980-4995. doi:  10.1109/TIP.2020.2977573
    [21] GAO S, CHENG M M, ZHAO K, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. doi:  10.1109/TPAMI.2019.2938758
    [22] FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), 2020: DOI: 10.1109/cvpr.2019.00326.
    [23] Nencini F, Garzelli A, Baronti S, et al. Alparone, remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007, 8(2): 143-156. doi:  10.1016/j.inffus.2006.02.001
    [24] LIU Y, WANG Z. Simultaneous image fusion and denoising with adaptive sparse representation[J]. Image Processing Iet. , 2014, 9(5): 347-357.
    [25] MA J, ZHOU Z, WANG B, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8-17.
    [26] YU Z A, YU L B, PENG S C, et al. IFCNN: A general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99-118. doi:  10.1016/j.inffus.2019.07.011
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  41
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-29
  • 修回日期:  2021-07-20
  • 刊出日期:  2022-02-20

目录

    /

    返回文章
    返回