Experimental Study on Multi-point Cooling of Single-Stage Pulse Tube Cryocooler
-
摘要:
单级脉管制冷机往往只考虑了冷头的制冷性能,其冷指冷头、室温端由于大温度梯度的存在所产生的制冷效用却常被忽略。为最大限度利用该类制冷机的制冷潜力,同时探究其多温区应用可能,由此开展了实验研究。基于一台8 W@80 K单级同轴型脉管制冷机,采用冷指外部及冷端分别添加负载的方式,模拟不同温区环境。通过热负荷的调控,获得了脉管制冷机不同负载方式下的制冷性能。基于实验数据的对照,分析了不同输入功下,制冷机中间制冷量、冷端制冷量等重要参数间的影响机制,并讨论了其潜在联系。实验结果表明,中间制冷温度、中间制冷量一定时,单级脉管制冷机多温区应用是可行的。
Abstract:In single-stage pulse-tube cryocoolers, only the cooling performance of the cold head is often considered, whereas the cooling effects at the cold and hot ends of the cold finger, due to the existence of large temperature gradients, are often neglected. Experimental studies were conducted to maximize the cooling potential of this type of cryocooler and to explore its applicability in multitemperature scenarios. The experiment was based on an 8W@80K single-stage coaxial pulse-tube cryocooler, with separate loads applied to the external and cold ends of the cold finger to simulate different temperature zones. The cooling performance of the pulse-tube cryocooler under different load conditions was measured by regulating the thermal load. Based on a comparison of the experimental data, the influence mechanism between key parameters, such as intermediate and cold-end cooling capacity, under different input powers was analyzed, and their potential interrelations were discussed. The experimental results showed that multi-temperature applications of single-stage pulse-tube cryocoolers are feasible when the intermediate cooling temperature and capacity remain constant.
-
Keywords:
- pulse tube cryocooler /
- single-stage /
- multi-point cooling
-
-
图 14 输入功率改变时,温度与冷端制冷量的关系
注:虚线为中间制冷量1 W,实线为中间制冷量4 W
Figure 14. The relationship between temperature and the cooling capacity of the cold end when the input power changes
Note: The dotted line represents a central cooling capacity of 1 W, while the solid line represents a central cooling capacity of 4 W
-
[1] Elwell J D, Cantwell G W, Scott D K, et al. A geosynchronous imaging Fourier transform spectrometer(GIFTS) for hyperspectral atmospheric remote sensing: instrument overview & preliminary performance results[C]//Infrared Spaceborne Remote Sensing XIV. 2006, 6297: 62970S.
[2] 蒋燕阳. 20 K深低温双级脉管制冷机关键技术研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2017. JIANG Yanyang. Research on Key Technology of 20 K cryogenic temperature two- stage pulse tube cryocooler[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technology Physics, Chinese Academy of Sciences), 2017.
[3] 朱海峰. 30 K两级脉管制冷机(火用)效率优化与耦合匹配分析[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2018. ZHU Haifeng. Exergy Efficiency Optimization and Coupling Analyzing of Two Stage Pulse Tube Refrigerators Below 30 K[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technology Physics, Chinese Academy of Sciences), 2018.
[4] Ramsey P G, Swanson K S. Life testing of the ABI cryocooler: two years complete[J]. Cryogenics, 2012, 52(4-6): 183-187. DOI: 10.1016/j.cryogenics.2012.01.021
[5] 刘少帅, 蒋珍华, 朱海峰, 等. 双温区高效脉管制冷机性能研究[J]. 真空与低温, 2019, 25(2): 121-125. LIU Shaoshuai, JIANG Zhenhua, ZHU Haifeng, et al. Study on performance of an efficiency pulse tube refrigerator operating at two temperature zones[J]. Vacuum and Cryogenics, 2019, 25(2): 121-125.
[6] 朱海峰, 吴亦农, 蒋燕阳, 等. 单压缩机驱动双冷指阻抗特性研究[J]. 工程热物理学报, 2017, 38(6): 1166-1170. ZHU Haifeng, WU Yinong, JIANG Yanyang, et al. Investigation on impedance character of two cold fingers driven by one compressor[J]. Journal of Engineering Thermophysics, 2017, 38(6): 1166-1170.
[7] 杨鲁伟, Thummes G. 单级高频脉冲管制冷机研究[J]. 工程热物理学报, 2007, 28(1): 24-26. YANG Luwei, Thummes G. Single stage high frequency pulse tube cooler with base temperature below 30 K[J]. Journal of Engineering Thermophysics, 2007, 28(1): 24-26.
[8] 张安阔, 吴亦农, 刘少帅, 等. 6 W@60 K脉管制冷机的优化及实验研究[J]. 工程热物理学报, 2015, 36(5): 945-948. ZHANG Ankuo, WU Yinong, LIU Shaoshuai, et al. Simulation and experimental study of a 6 W@60 K PTR[J]. Journal of Engineering Thermophysics, 2015, 36(5): 945-948.
-
期刊类型引用(8)
1. 郭广浩,吴南健,刘力源. 低功耗非制冷红外图像处理专用SoC芯片. 红外与毫米波学报. 2023(01): 122-131 . 百度学术
2. 郭玉婷,贾晓洪,李丽娟,刘俊明. 时空域自适应滤波非均匀性校正算法. 红外技术. 2023(05): 482-487 . 本站查看
3. 黎明清 ,王宇庆 ,孙海江 . 基于侧窗滤波改进的神经网络非均匀性校正算法. 液晶与显示. 2023(11): 1567-1579 . 百度学术
4. 汪晓,葛军. 基于局部梯度的神经网络非均匀性校正算法. 红外. 2018(03): 18-22+43 . 百度学术
5. 潘科辰,顾国华,陈钱,隋修宝. 一种改进的全变分模型校正红外焦平面阵列条纹非均匀性. 红外技术. 2016(02): 138-143 . 本站查看
6. 李召龙,沈同圣,史浩然,娄树理. 红外成像系统非均匀性快速校正方法. 舰船科学技术. 2016(21): 148-150 . 百度学术
7. 牛英宇,聂瑞杰,李丽娟. 基于FPGA的红外图像非均匀校正实现方法. 激光与红外. 2016(08): 1028-1032 . 百度学术
8. 陈芳林,张宝辉,汪贵华,杨开峰,于世孔. 改进的神经网络非均匀性校正算法研究. 科学技术与工程. 2016(33): 215-220 . 百度学术
其他类型引用(8)