锁相红外检测技术对耐候涂层厚度的评估

Thickness Evaluation of Weather Resistant Coatings Based on Lock-in Thermography

  • 摘要: 输变电设施的金属构件容易受温度、湿气等气候因素影响而发生侵蚀,因此通常需要在其表面喷涂耐候保护涂层。为了确保涂层厚度符合要求,需要对其进行检测。针对现有检测方法的不足,本文采用锁相红外无损检测技术对耐候涂层厚度进行检测与评估。首先采用制作的标准涂层试件对该方法测厚的原理与重复性进行验证,验证了该技术对涂层厚度的评估的可靠性与稳定性;其后采用厚度均匀过渡的耐候涂层试片进行测试,采用试片上定标点的相位值拟合出定标曲线,并利用该曲线测量出试片上验证点的厚度信息。实验结果表明,测量厚度与真实厚度误差在±5%以内,采用相位图像可以对耐候涂层厚度与均匀度进行有效测量与评估。

     

    Abstract: Owing to the influence of environmental temperature, pollution, moisture, and other climatic factors, metal components of power transmission and transformation systems are prone to premature failure. Generally, weather-resistant materials are coated on metal components. In view of the shortcomings of the existing methods for measuring the coatings, this study uses lock-in thermographic technology to evaluate the thickness. First, the principle and repeatability of the method were verified using standard coating specimens. The results show that the method is reliable and stable for the evaluation of the coating thickness. Subsequently, a wedged weather-resistant coating sample was tested. The error in the measured thickness was within ±5% of the actual value. Therefore, the phase image can be used to effectively measure and evaluate the thickness and uniformity of weather-resistant coatings.

     

/

返回文章
返回