Infrared and Visible Image Fusion Based on SGWT and Multi-Saliency
-
摘要: 由于谱图小波变换(Spectral Graph Wavelet Transform, SGWT)可充分利用图像在图域中的光谱特性,本文结合其对不规则小区域表达的优势,提出了一种基于多显著性的红外与可见光融合算法。首先应用SGWT将源图像分解成一个低频子带和若干个高频子带;对于低频系数,将多个互补的低层特征结合起来,提出了一种适合人眼视觉特征的多显著性融合规则,对于高频系数,充分考虑邻域像素的相关性,提出了一种区域绝对值取大规则;最后,应用了一种加权最小二乘优化(weighted least squares, WLS)方法对谱图小波重构的融合图像进行优化,在突出显著目标的同时尽可能多地保留可见光的背景细节。实验结果表明,与DWT(Discrete Wavelet Transform)、NSCT(Non-down Sampled Contourlet Transform)等7种相关算法相比,在突出红外目标的同时还能保留更多的可见光背景细节,具有较好的视觉效果;同时在方差、熵、Qabf和互信息量4个客观评价上也均占据优势。Abstract: Spectral graph wavelet transform (SGWT) can fully utilize the spectral characteristics of an image in the image domain and has advantages in the expression of small irregular regions. Therefore, this paper proposes an infrared and visible fusion algorithm based on multi saliency. First, SGWT is used to decompose the source image into a low-frequency sub-band and several high-frequency sub-bands. For low-frequency coefficients, a multi saliency fusion rule suitable for human visual features is proposed by combining multiple complementary low-level features. For high-frequency coefficients, a rule for increasing the absolute value of the region is proposed by fully considering the correlation of neighborhood pixels. Finally, a weighted least squares optimization method is applied to optimize the fusion image reconstructed by spectral wavelet reconstruction, which highlights the main target and retains the background details of visible light as much as possible. The experimental results show that, compared with seven related algorithms such as DWT and NSCT, this method can highlight the infrared target and retain more visible background details, resulting in a better visual effect. Moreover, it exhibits advantages in four objective evaluations: variance, entropy, Qabf, and mutual information.
-
Keywords:
- image fusion /
- spectral graph wavelet transform /
- multi saliency /
- WLS
-
0. 引言
大视场多目标监视是目前红外搜索跟踪领域研究的热点,该领域正朝着高分辨率、超大视场成像的方向发展[1-3]。对应大视场下多目标的监视与跟踪任务,视场的增大,红外图像的背景成分变得极其复杂,又加上来自地面建筑物、地杂波等的干扰,极其容易在图像区域产生伪目标,造成红外全景搜索跟踪系统的虚警[4-7]。在实施全景搜索跟踪的任务过程中,视场中难免出现虚假运动目标,其中既有静止物体,也可能包含运动方向与真实目标不一致的物体。如果不能对以上虚假目标及时进行识别并剔除,将会严重影响后续搜索跟踪任务的执行。
针对红外搜索跟踪容易遇到的上述问题,王卫华[8]等人提出了一种基于兴趣区(region of interest)提取的目标实时监测算法,根据目标运动特性与灰度特性快速提取目标可能存在的兴趣区,再针对兴趣区内的局部目标图像切片,进一步剔除虚假目标干扰;陈炳文[9]提出一种基于时空融合与粒子滤波的弱目标检测算法,首先利用像素点的帧间和邻域相关性,采用短程非参数核建模算法检测候选目标,接着使用粒子滤波跟踪候选目标,以剔除虚假目标得到真实航迹;王雪梅[10]等提出了基于背景检测的单帧检测弱小目标改进算法,结合多方向多极梯度算法,对背景预测初步检测出来的可能目标点进一步检测,从而排除虚假目标;罗举平[11]等针对红外目标检测任务,提出了变门限检测与跟踪的方法,减少了虚假量测的数量。张艳艳[12]等引入Lucas-Kanade(LK)光流法,对光流结果进行最大类间方差分割,视光流不连续区域为真实运动目标;西北工业大学[13]利用Lucas-Kanade光流法对连续帧红外图像检测疑似运动区域,再通过SVD(singular value decomposition)分解与目标背景重构检测弱小目标;Lei Wang[14]等利用先验概率降低视频中目标检测的误报率;Recchia Giuseppe[15]等将Lucas-Kanade光流法应用于无人机光电视避系统,有效降低了误警率与虚警率。然而上述方法并不专门针对全景图像,因此对于全景图像中同一运动目标帧间距离过大造成的影响,这些方法并不能有效解决。类似方法甚至会错把真实运动目标当作虚假目标加以剔除,因而并不适用于降低红外搜跟系统的虚警率。本文针对以上问题提出了一种基于Lucas-Kanade光流特征的红外全景系统虚假目标甄别与剔除的方法。
1. 建立图像金字塔
选取前后相邻两帧红外全景图像I和J,为图像I和J分别建立金字塔表达${\{ {I^L}\} _{L = 0,...{L_m}}}$和${\{ {J^L}\} _{L = 0,...{L_m}}}$,这里Lm通常取为3,也就是金字塔层数一般为4。把原始图像作为第0层,通过高斯滤波并令宽高缩小2L倍的图像作为第L层,多层图像组合类似金字塔,如图 1所示。
2. 计算前后帧图像光流
由于红外全景搜索跟踪系统的任务在于利用360°全景影像实现对周围环境态势感知的能力,因此往往将目标定为包括人、车辆、舰船以及飞机等相比环境温度较高的物体。在实际图像中该类目标一般呈现较高的灰度值,因此本文利用二值化将图像中的高亮目标都事先提取出来,在这些高亮目标区域中随机选择若干像素记为该目标对应的像素点u,接下来利用LK光流法思想依次从最高层开始计算目标像素点u对应的LK光流dL,并取LK光流dL对应层光流初始值gL的和为下一层光流的初始值,直至迭代到原始图像层(第0层),最终获取目标像素点u在原始图像层的光流值按照如下步骤计算图像光流d,接着利用光流d的模值与角度为主要特征,使用聚类算法将真实运动目标和虚假运动目标区分开来。首先计算前后帧图像间的光流:
初始化最高层光流的初始值${g^{{L_m}}} = {\left[ {0\;\;0} \right]^{\text{T}}}$,令L=Lm,每迭代一次,L减1,直到L=0:
由于图像金字塔建立过程中,图像的长宽依次缩小一倍,因此针对第L层图像,计算图像IL中像素点u对应的位置:$u{\text{ = [}}u_x^L\;\;u_y^L{\text{] = }}u{\text{/}}{{\text{2}}^L}$;
计算图像IL在x方向的梯度:
$$ I_x^L(x,y) = \frac{{{I^L}(x + 1,y) - {I^L}(x - 1,y)}}{2} $$ (1) 计算图像IL在y方向的梯度:
$$ I_y^L(x,y) = \frac{{{I^L}(x,y + 1) - {I^L}(x,y - 1)}}{2} $$ (2) 计算空间矩阵:
$$ \boldsymbol{G} = \sum\limits_{x = u_x^L - {w_x}}^{x = u_x^L + {w_x}} {\sum\limits_{y = u_y^L - {w_y}}^{y = u_y^L + {w_y}} {\left[ {\begin{array}{*{20}{c}} {I_x^{\text{L}}I_x^{\text{L}}}&{I_x^LI_y^L} \\ {I_x^LI_y^L}&{I_y^LI_y^L} \end{array}} \right]} } $$ (3) 式中:wx、wy表示u处具有相同光流邻域的大小。
初始化迭代LK光流初始值d0=[0 0]T;
令k=1,每迭代一次k加1,直到匹配差异向量$ \left| {{\eta ^k}} \right| $小于1:
定义此时(x, y)处前后两帧图像的差异δI(x, y),则有:
$$ \delta {I^k}(x,y) = {I^L}(x,y) - {J^L}(x + g_x^L + d_x^{k - 1},y + g_y^L + d_y^{k - 1}) $$ (4) 计算图像差异:
$$ {b_k} = \sum\limits_{x = u_x^L - {w_x}}^{x = u_x^L + {w_x}} {\sum\limits_{y = u_y^L - {w_y}}^{y = u_y^L + {w_y}} {\left[ {\begin{array}{*{20}{c}} {\delta {I^k}(x,y){I_x}(x,y)} \\ {\delta {I^k}(x,y){I_y}(x,y)} \end{array}} \right]} } $$ (5) 计算匹配差异向量:
$$ η^{k}=\boldsymbol{ G}^{−1}b_{k} $$ (6) 计算光流:
为下一次迭代提供初始值dk=dk−1+ηk;
结束k上的迭代,得到第L层图像上的光流优化值dL=dk;
为第L-1层图像提供光流初始值gL−1=2(gL+dL);
结束L上的迭代,最终计算得到光流d=g0+d0;
得到图像J中对应点坐标v=u+d。
3. 重新表达目标光流
上述步骤求得前帧图像I中目标区域像素点u在前后两帧图像对应的光流d,以及该像素点在后帧图像J中的位置v。其中光流d为一个二维向量,该向量标识图像平面内由位置u指向位置v的运动位移。而同一个运动目标其运动位移应该是一致的,这就给区分真实运动目标和虚假运动目标带来了先决条件。针对图像I中经过二值化后获得的目标区域,每个区域选择m个像素点(u1, u2, …, um),本方案根据图像视场范围以及处理器运算能力综合考量选择m=5。对于每一个像素点ui,按照第2章所述方法得到对应的光流d(ui),然后利用算术平均值来求取对应目标区域Φ的光流dΦ:
$$ {d_\varPhi } = \frac{{\sum\limits_{i = 1}^m {d({u_i}} )}}{m} $$ (7) 4. 目标分类
对于地面建筑或者地杂波等产生的虚假目标,由于全景成像系统镜头本身的运动,造成其通过上述计算也会产生光流值,但该光流值并不能反映像素点的实际运动。虚假目标光流值与真实目标光流值会有显著不同,这主要表现在光流向量的方向和大小两个方面。
1)虚假目标由于本身静止或运动范围很小,在叠加了红外摄像机自身旋转运动后,其光流方向会有高度趋同性,而真实运动目标的光流方向应与其实际位移方向一致,从而造成虚假目标与运动目标在运动方向上的显著区别;
2)虚假目标因为本身基本处于静止状态,表征运动位移的光流仅反映红外摄像机自身的运动,实际观察光流值大小应不大于10个像素,这也是区别于实际运动物体的显著特征。
设$\overrightarrow d = (x,y)$,令$\left| d \right| = \sqrt {{x^2} + {y^2}} $表示光流向量的大小,令θ表示光流向量的方向,其中:
$$ \theta = \left\{ \begin{array}{l} \arccos \frac{x}{{\sqrt {{x^2} + {y^2}} }},y \geqslant 0 \hfill \\ 2{\text{π }} - \arccos \frac{x}{{\sqrt {{x^2} + {y^2}} }},y < 0 \hfill \\ \end{array} \right. $$ (8) 创建向量$\vec L = (\left| d \right|,\theta )$用于重新表达光流,目的在于后续根据光流区分真实运动目标与静止虚假目标。根据前述第3章中的分析,虚假静止目标的表征向量$\vec L$会具有很小的$\left| d \right|$值,且θ值会比较接近,将其标注到二维直角坐标系中虚假静止目标的向量L坐标会高度集中,而真实运动目标则会大范围随机分布,如图 2所示。
最后利用聚类算法将得到的目标光流进行分类,由图 2可以发现真实运动目标与虚假运动目标的光流分布区域有较大区别,为了把二者快速区分开来,首先在离θ轴较近的光流表征向量$\vec L$中随机选择一个作为第一个初始聚类中心,然后选择距离该中心最远的一个光流表征向量$\vec L$作为第二个初始聚类中心,通过计算各光流表征向量$\vec L$与初始化聚类中心的距离,将这些光流表征向量$\vec L$重新划归至距离最近的类别,并以新类别中各光流表征向量$\vec L$的均值作为新的聚类中心,持续迭代直至光流表征向量的分配聚类情况没有更新,以实现最终把真实运动目标(类别1)与虚假静止目标(类别2)分开的目的。
5. 实验结果
为验证本文的虚警率降低方法是否具有普遍性,项目组利用研发成功的红外全景成像设备采集不同环境下(室内、室外)的中波红外全景图像,在Windows操作系统下使用Visual C++开发环境将本文算法实现,将不同场景下前后两帧全景图作为输入,以验证算法有效性。
观察图 3和图 4可以发现,无论室外还是室内环境,复杂背景下总会引入干扰,同时搜索跟踪系统自身旋转导致其中的高亮物体都会得到表征运动的光值,因此很多由于干扰产生的伪目标极易被搜索跟踪系统误判为真实运动目标。引入本文算法后,系统对输入的前后两帧全景图像计算LK光流,随后将重点区域光流进行包括大小与方向的比对,按照聚类思想将其实施二分类,重复迭代直至真实运动物体被区分出来。根据图 3与图 4中处理后图像可以发现,红外全景图像中的真实运动物体均以实线框标记出来,而由于干扰造成的虚假运动目标被虚线框标记出来,由此可见本文算法较好地将红外搜索跟踪系统所获全景场景中的虚假运动目标加以抑制,从而有效降低了该类系统的虚警率。
6. 结论
红外全景监控设备是未来红外热像系统化发展的主要趋势,而大视场的引入必然加大后续图像处理设备的工作量,对于嵌入式图像处理系统由于本身运算能力有限,因此在预处理阶段自动排除虚假目标以减轻后续处理运算的压力就显得尤为必要。本文所述方法通过对实际采集的红外全景序列图像加以分析,很好地剔除了造成干扰的虚假运动目标,实验结果也验证了该方法的有效性。未来将把该方法向以GPU/FPGA+DSP为主处理器的嵌入式平台移植,同时针对特征提取阶段做更为深入的研究融入更多特征以提升虚假目标检测效果,为红外搜索跟踪系统等产品提供有效的技术支持。
-
表 1 flower图像客观评价指标
Table 1 Objective evaluation indicators of flower images
DWT DTCWT CVT GFF NSCT NSCT_PC NSCT_SR SGWT Var 37.3080 36.3593 36.2790 36.5681 37.2982 42.5228 40.6044 42.6666 EN 6.5573 6.5645 6.5636 6.5935 6.5568 6.8158 6.7140 6.8323 Qabf 0.6365 0.6673 0.6390 0.5893 0.6975 0.6861 0.6964 0.6976 MI 2.3616 2.4034 2.3082 2.6099 2.4929 3.0072 3.1261 3.5597 表 2 Lawn图像客观评价指标
Table 2 Objective evaluation indicators of Lawn images
DWT DTCWT CVT GFF NSCT NSCT_PC NSCT_SR SGWT Var 58.4410 57.5139 57.7888 57.1643 57.8236 58.4217 57.9354 63.9020 EN 7.6123 7.5891 7.5840 7.5986 7.5868 7.6568 7.6426 7.7596 Qabf 0.6757 0.6848 0.6779 0.4531 0.7126 0.6338 0.7152 0.6928 MI 3.2909 3.2203 2.9565 3.4018 3.2720 3.1470 4.8323 3.7267 表 3 Street图像客观评价指标
Table 3 Objective evaluation indicators of Street images
DWT DTCWT CVT GFF NSCT NSCT_PC NSCT_SR SGWT Var 31.6360 29.4182 29.0921 32.4384 30.6035 35.7108 36.4667 37.0747 EN 6.4955 6.4084 6.4144 6.5206 6.4520 6.7867 6.8106 6.8876 Qabf 0.6030 0.6046 0.5453 0.6740 0.6479 0.6659 0.6356 0.6587 MI 1.4877 1.3668 1.2417 1.2955 1.4770 2.5260 2.5474 2.5755 表 4 Mountain图像客观评价指标
Table 4 Objective evaluation indicators of Mountain images
DWT DTCWT CVT GFF NSCT NSCT_PC NSCT_SR SGWT Var 28.3593 26.2615 26.8678 25.8712 27.0885 32.7642 31.4361 35.5412 EN 6.6387 6.4844 6.5329 6.4260 6.5542 6.9621 6.8022 7.1060 Qabf 0.4349 0.4582 0.4114 0.4999 0.4942 0.4417 0.4528 0.4341 MI 1.0551 1.0712 1.0196 1.1347 1.0740 1.1678 1.0069 1.1929 -
[1] Goshtasby A, Nikolov S. Image fusion: Advances in the state of the art[J]. Information Fusion, 2007, 8(2): 114-118. DOI: 10.1016/j.inffus.2006.04.001
[2] Toet A, Hogervorst M A, Nikolov S G, et al. Towards cognitive image fusion[J]. Information Fusion, 2010, 11(2): 95-113. DOI: 10.1016/j.inffus.2009.06.008
[3] Falk H. Prolog to a categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application[J]. Proceedings of the IEEE, 1999, 87(8): 1315-1326 DOI: 10.1109/5.775414
[4] GAO Y, MA J, Yuille A L. Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples[J]. IEEE Transactions on Image Processing, 2017, 26(5): 2545-2560. DOI: 10.1109/TIP.2017.2675341
[5] LIU C H, QI Y, DING W R. Infrared and visible image fusion method based on saliency detection in sparse domain[J]. Infrared Physics & Technology, 2017, 83: 94-102.
[6] 杨风暴, 董安冉, 张雷, 等. DWT、NSCT和改进PCA协同组合红外偏振图像融合[J]. 红外技术, 2017, 39(3): 201-208. http://hwjs.nvir.cn/article/id/hwjs201703001 YANG Fengbao, DONG Anran, ZHANG Lei, et al. Infrared polarization image fusion using the synergistic combination of DWT, NSCT and improved PCA[J]. Infrared Technology, 2017, 39(3): 201-208. http://hwjs.nvir.cn/article/id/hwjs201703001
[7] 董安勇, 杜庆治, 苏斌, 等. 基于卷积神经网络的红外与可见光图像融合[J]. 红外技术, 2020, 42(7): 660-669. http://hwjs.nvir.cn/article/id/hwjs202007009 DONG Anyong, DU Qingzhi, SU Bin, ZHAO Wenbo, et al. Infrared and visible image fusion based on convolutional neural network[J]. Infrared Technology, 2020, 42(7): 660-669. http://hwjs.nvir.cn/article/id/hwjs202007009
[8] MA J, MA Y, LI C. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
[9] David K Hammond, Pierre Vandergheynst, Rémi Gribonval. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011, 30: 129-150. DOI: 10.1016/j.acha.2010.04.005
[10] Morrone M C, Ross J, Burr D C, et al. Mach bands are phase dependent[J]. Nature, 1986, 324(6094): 250-253. DOI: 10.1038/324250a0
[11] ZHANG L, ZHANG L, MOU X, et al. FSIM: A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386. DOI: 10.1109/TIP.2011.2109730
[12] ZHOU Z, LI S, WANG B. Multi-scale weighted gradient-based fusion for multi-focus images[J]. Information Fusion, 2014, 20: 60-72. DOI: 10.1016/j.inffus.2013.11.005
[13] MA J, ZHOU Z, WANG B, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8-17.
[14] LI H, Manjunath B S, Mitra S. Multisensor image fusion using the wavelet transform[J]. Graphical Models and Image Processing, 1995, 57(3): 235-245. DOI: 10.1006/gmip.1995.1022
[15] Nencini F, Garzelli A, Baronti S, et al. Remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007, 8(2): 143-156. DOI: 10.1016/j.inffus.2006.02.001
[16] LI S, KANG X, HU J. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875. DOI: 10.1109/TIP.2013.2244222
[17] LI S, YANG B, HU J. Performance comparison of different multi-resolution transforms for image fusion[J]. Information Fusion, 2011, 12(2): 74-84. DOI: 10.1016/j.inffus.2010.03.002
[18] YU L, LIU S, WANG Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. DOI: 10.1016/j.inffus.2014.09.004
[19] ZHU Z, ZHENG M, QI G, et al. A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain[J]. IEEE Access, 2019, 7: 20811-20824. DOI: 10.1109/ACCESS.2019.2898111
[20] 张小利, 李雄飞, 李军. 融合图像质量评价指标的相关性分析及性能评估[J]. 自动化学报, 2014, 40(2): 306-315. DOI: 10.3724/SP.J.1004.2014.00306 ZHANG Xiao-Li, LI Xiong-Fei, LI Jun. Validation and correlation analysis of metrics for evaluating performance of image fusion[J]. Acta Automatica Sinica, 2014, 40(2): 306-315. Doi: 10.3724/SP.J.1004.2014.00306
-
期刊类型引用(1)
1. 花文波,赵城慷,高大友,花文涛. 一种温度补偿调焦红外系统丢包检测方法. 红外技术. 2024(09): 1081-1086 . 本站查看
其他类型引用(0)