基于显著性检测与MDLatLRR分解的红外与可见光图像融合

Infrared and Visible Image Fusion Based on Saliency Detection and Latent Low-Rank Representation

  • 摘要: 针对红外与可见光图像融合过程中细节信息的缺失、融合结果对比度较低等问题,提出一种基于显著性检测与多层潜在低秩表示的红外与可见光图像融合方法。首先,使用基于显著性检测的方法对红外与可见光图像进行预融合;然后,使用多层潜在低秩表示方法依次将红外图像、可见光图像和预融合图像分解为低秩层和细节层;其中细节层采用结构相似性和L2范数相结合的方法进行融合,低秩层使用基于能量属性的方法进行融合;最后,将低秩层和细节层的融合结果重构便得到最终的融合图像。文中将该方法与11种具有代表性的图像融合方法进行了评估比较,通过对比多组融合图像的主客观评价,其结果表明,相较于对比方法,本方法能够保留红外与可见光图像融合过程中源图像的有效细节,且融合结果具有较高的对比度,更符合人们的视觉理解。

     

    Abstract: To address the problems of missing detail and low contrast in the fusion of infrared and visible images, this study proposes a fusion method based on saliency detection and latent low-rank representation. First, a pre-fusion image is obtained by saliency detection for the infrared and visible images. Then, the infrared, visible, and pre-fused images are decomposed into low-rank and detail layers by the multilevel latent low-rank representation method. The detail layer is fused by combining the hyperspherical L2 norm and structural similarities, while the low-rank layer is fused using an approach based on the energy property. The final fused image is obtained by adding the fusion results of the low-rank and detail layers. The proposed method is compared with 11 representative image fusion methods by conducting subjective and objective evaluations of multiple groups of fused images. The results show that the image fusion method enhances the effective detail information and improves the image contrast, yielding a fusion result that is more in line with people's visual understanding.

     

/

返回文章
返回