Simplified Calculation Method of FY-3D Satellite MERSI-Ⅱ Thermal Infrared Channel Split-Window Simulation
-
摘要:
劈窗算法广泛应用于多种卫星载荷的地表温度反演。在拟合劈窗算法系数时,大量的数据迭代模拟往往非常耗时、效率低下。因此,开发一种高效率的劈窗仿真计算简化方法具有重要意义。本文首先利用MODTRAN模拟分析背景参数的变化对总辐亮度的影响,然后在FY-3D MERSI-Ⅱ两个相邻的热红外通道下,对关键参数与总辐亮度的关系进行模拟分析,并探究关键参数耦合情形下总辐亮度的变化规律。通过仿真结果可知,在MERSI-Ⅱ热红外通道下,地表温度的变化对总辐亮度的影响大于地表发射率;大气水汽含量对总辐亮度的影响程度随着地表发射率和地表温度的增大而增大,而地表发射率和地表温度对总辐亮度的影响程度随着大气水汽含量的增大而减小;在确定劈窗算法系数时,可以通过缩小大气水汽含量的取值范围来减少仿真次数,从而提高仿真效率。当地表温度在300~320 K时,大气水汽含量的取值范围为0.5~5.5 g/cm2;当地表温度在270~300 K时,大气水汽含量的取值范围缩小为0.5~4.0 g/cm2。节省的仿真次数占总次数的比例为18.23%,仿真时间缩短了26 min。简化前后方案的劈窗系数拟合和绝对差值计算结果表明,简化方案对拟合结果的影响较小。
Abstract:The split-window algorithm has been widely applied for surface temperature inversion of various satellite payloads. The iterative simulation of large datasets during the fitting of split-window algorithm coefficients is often time-consuming and inefficient. Therefore, it is important to develop a highly efficient simplification method for split-window simulation computations. MODTRAN was to simulate and analyze the impact of variations in background parameters on total radiance. Subsequently, we performed a simulation analysis of the relationship between key parameters and total radiance under two adjacent thermal infrared channels of FY-3D MERSI-Ⅱ, exploring the variation patterns of total radiance under different coupling scenarios of these key parameters. Simulation results reveal that under the MERSI-Ⅱ thermal infrared channels, changes in land surface temperature have a greater impact on total radiance than surface emissivity. The effect of the atmospheric water vapor content concentration on the total radiance increases with an increase in both the land surface emissivity and land surface temperature, whereas the influence of the land surface emissivity and land surface temperature on the total radiance decreases as the atmospheric water vapor content concentration increases. When determining the coefficients for the split-window algorithm, narrowing the range of the atmospheric water vapor content concentration can reduce the number of simulations required, thereby enhancing the efficiency. For land surface temperatures ranging from 300 to 320 K, the atmospheric water vapor content concentration should be within 0.5 to 5.5 g/cm²; for temperatures ranging from 270 to 300 K, this range narrows to 0.5 to 4.0 g/cm². The saved simulation runs account for 18.23% of the total number of runs, which reduces the simulation time by 26 min. A comparison of the split-window coefficient fitting and absolute difference calculation results before and after simplification shows that the simplified scheme has minimal impact on the fitting outcomes.
-
Keywords:
- thermal infrared /
- MODTRAN /
- simulation calculation /
- split-window algorithm
-
-
图 3 不同大气廓线下总辐亮度与相对变化百分比的双y轴图:(a)、(b)、(c)和(d)分别表示828、855、909和1216 cm-1处总辐亮度与相对变化百分比随不同大气廓线的变化
Figure 3. Dual y-axis plots of total radiance and relative percentage change under different atmospheric profiles: (a), (b), (c) and (d) respectively represent the changes of total radiance and relative percentage change at 828, 855, 909, and 1216 cm-1 with different atmospheric profiles
表 1 辐射传输计算的参数设置
Table 1 Parameter settings for radioactive transfer calculation
Parameters Setting View zenith angle/(°) 0−60, interval 5 Atmospheric profile Mid-Latitude Summer (45 North Latitude) Water vapor content/(g/cm2) 2.5 O3 column concentrations/(g/cm2) 0.0005 CO2 mixture ratio/ppmv 420 Surface temperature/K 300 Surface emissivity 0.98 Wavenumber range/(cm−1) 714−1250 Digital elevation model/km 0.002 Sensor altitude/km 700 表 2 方案1和方案2之间的对比
Table 2 Comparison between scheme 1 and scheme 2
Scheme 1 Scheme 2 Parameter setting LST/K 270-320 270-300 300-320 WVC/(g/cm2) 0.5-5.5 0.5-4.0 0.5-5.5 Simulation times 10201 8341 Simulation time/min 143 117 表 3 方案1和方案2的劈窗系数的绝对差值
Table 3 Absolute difference of split-window coefficients between Scheme 1 and Scheme 2
1/cos(VZA) a0 a1 a2 a3 a4 a5 a6 a7 1.00 22.9737 0.0794 0.0206 0.0227 0.4905 5.3143 4.4661 0.1420 1.01 23.1131 0.0799 0.0205 0.0230 0.4863 5.3274 4.4914 0.1428 1.02 23.5530 0.0814 0.0203 0.0240 0.4729 5.3657 4.5633 0.1449 1.05 24.3528 0.0842 0.0198 0.0259 0.4482 5.4336 4.6724 0.1483 1.09 25.6365 0.0886 0.0190 0.0286 0.4082 5.5332 4.7987 0.1529 1.15 27.6089 0.0954 0.0179 0.0327 0.3468 5.6699 4.9094 0.1583 1.24 30.6300 0.1059 0.0162 0.0383 0.2551 5.8456 4.9474 0.1638 1.35 35.2774 0.1221 0.0135 0.0459 0.1240 6.0530 4.8112 0.1683 1.49 42.3907 0.1471 0.0089 0.0552 0.0471 6.2305 4.2545 0.1689 1.70 51.3369 0.1788 0.0008 0.0627 0.1793 5.9706 2.3816 0.1567 2.00 7.9926 0.0265 0.0069 0.0292 0.6625 1.0401 6.2706 0.0934 -
[1] Martha C. Anderson, Richard G. Allen, Anthony Morse, et al. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources [J]. Remote Sensing of Environment, 2012, 122: 50-65. DOI: 10.1016/j.rse.2011.08.025
[2] SUN Liang, CHEN Zhongxin, GAO Feng, et al. Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data [J]. Computers & Geosciences, 2017, 105: 10-20.
[3] LI Ziying, HAN Yang, HAO Tianyi. Assessing the consistency of remotely sensed multiple drought indices for monitoring drought phenomena in continental China [J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5490-5502. DOI: 10.1109/TGRS.2020.2966658
[4] Yuhei Yamamoto, Hirohiko Ishikawa. Influence of urban spatial configuration and sea breeze on land surface temperature on summer clear-sky days [J]. Urban Climate, 2020, 31: 1-10.
[5] 崔庆岗, 吴树明, 殷显阳, 等. 卫星热红外遥感技术在东平县地热资源调查中的应用[J]. 化工矿产地质, 2023, 45(2): 180-187. DOI: 10.3969/j.issn.1006-5296.2023.02.013 CUI Qinggang, WU Shuming, YIN Xianyang, et al. Application of the satellite thermal infrared remote sensing technology in geothermal resource survey in Dongping County[J]. Geology of Chemical Minerals, 2023, 45(2): 180-187. DOI: 10.3969/j.issn.1006-5296.2023.02.013
[6] 郭圆新, 梁琨, 徐杨睿, 等. 基于直接散射光谱的多环境要素激光遥感方法[J]. 光电工程, 2024, 51(3): 52-76. GUO Yuanxin, LIANG Kun, XU Yangrui, et al. Multiple environmental elements laser remote sensing method based on direct scattering spectrum[J]. Opto-Electronic Engineering, 2024, 51(3): 52-76.
[7] 张璐, 张兴赢, 曹西凤, 等. 大气环境监测卫星星载激光雷达二氧化碳遥感反演方法及精度验证[J]. 上海航天(中英文), 2023, 40(3): 30-36. ZHANG Lu, ZHANG Xingying, CAO Xifeng, et al. Inversion method for XCO2 remote sensing by spaceborne lidar onboard atmospheric environmental monitoring satellite and its accuracy validation[J]. Aerospace Shanghai(Chinese & English), 2023, 40(3): 30-36.
[8] YE Xin, REN Huazhong, ZHU Jinshun, et al. Land surface temperature retrieval based on thermal infrared channel decomposed split-window algorithm [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4971-4979. DOI: 10.1109/JSTARS.2022.3181505
[9] LI Zhaoliang, WU Hua, WANG Ning, et al. Land surface emissivity retrieval from satellite data [J]. International Journal of Remote Sensing, 2013, 34(9-10): 3084-3127. DOI: 10.1080/01431161.2012.716540
[10] Jordi Cristóbal, Juan C Jiménez-Muñoz, Anupma Prakash, et al. An improved single-channel method to retrieve land surface temperature from the landsat-8 thermal band[J]. Remote Sensing, 2018, 10(3): 431. DOI: 10.3390/rs10030431
[11] ZHAO Junli, TANG Bohui, OUYANG Sima. A nonlinear split-window algorithm for retrieving land surface temperatures from Fengyun-4B thermal infrared data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-12.
[12] MA Chenyang, QIAN Yonggang, LI Kun, et al. Temperature and emissivity retrieval from hyperspectral thermal infrared data using dictionary-based sparse representation for emissivity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-16.
[13] Larry M. McMillin. Estimation of sea surface temperatures from two infrared window measurements with different absorption [J]. Journal of Geophysical Research, 1975, 80(36): 5113-5117. DOI: 10.1029/JC080i036p05113
[14] John C Price. Land surface temperature measurements from the split window channels of the NOAA 7 advanced very high resolution radiometer[J]. Journal of Geophysical Research Atmospheres, 1984, 89(D5): 7231-7237. DOI: 10.1029/JD089iD05p07231
[15] Becker F. The impact of spectral emissivity on the measurement of land surface temperature from a satellite[J]. International Journal of Remote Sensing, 1987, 8(10): 1509-1522. DOI: 10.1080/01431168708954793
[16] TANG Bohui, BI Yuyun, LI Zhaoliang, et al. Generalized split-window algorithm for estimate of land surface temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) data [J]. Sensors, 2008, 8(2): 933-951. DOI: 10.3390/s8020933
[17] CHEN Du, REN Huazhong, QIN Qiming, et al. A practical split-window algorithm for estimating land surface temperature from Landsat 8 Data [J]. Remote Sensing, 2015, 7(1): 647-665. DOI: 10.3390/rs70100647
[18] 程元良, 吴骅, 李召良, 等. FY-3D MERSI-Ⅱ地表温度遥感反演与验证[J]. 遥感学报, 2021, 25(8): 1792-1807. CHENG Yuanliang, WU Hua, LI Zhaoliang, et al. Retrieval and validation of the land surface temperature from FY-3D MERSI-Ⅱ[J]. National Remote Sensing Bulletin, 2021, 25(8): 1792-1807.
[19] 姚前, 李正强, 樊程, 等. 中红外大气强吸收波段地气杂波全球空间分布研究[J]. 光谱学与光谱分析, 2024, 44(11): 1-17. YAO Qian, LI Zhengqiang, FAN Cheng, et al. Study on global spatial distribution of surface-atmosphere clutter in mid-infrared atmospheric strong absorption band[J]. Spectroscopy and Spectral Analysis, 2024, 44(11): 1-17.
[20] WAN Zhengming. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product[J]. Remote Sensing of Environment, 2014, 140: 36-45.
[21] 姚前, 许华, 樊程, 等. 一种应用于卫星中红外遥感的辐射传输简化计算方案[J]. 红外与毫米波学报, 2024, 43(3): 377-392. YAO Qian, XU Hua, FAN Cheng, et al. A simplified parameterization scheme of mid-infrared radiative transfer for satellite remote sensing[J]. Journal of Infrared and Millimeter Waves, 2024, 43(3): 377-392.
-
期刊类型引用(5)
1. 吴耀炜,龚建周,陈智勇,袁海威,林颖怡. 一种DeepLabv3+结构改进的高分遥感影像红树林边界识别方法. 广州大学学报(自然科学版). 2024(03): 93-104 . 百度学术
2. 刘思言,王春月,赵宇恒,秦磊,付璐,于海洋. 吉林一号卫星在查干湖国家级自然保护区人类活动监测中的应用. 卫星应用. 2023(03): 55-60 . 百度学术
3. 曹宏徙. 基于神经网络的多源遥感图像语义分割系统设计. 信息记录材料. 2023(05): 189-191+195 . 百度学术
4. 冯一军,陈霖,梁雄乾,王志虎,王鑫. 无人机智能遥感信息提取技术研究与应用. 计算机测量与控制. 2023(06): 231-237 . 百度学术
5. 田普光. 基于对象上下文信息的无人机影像建筑物提取. 测绘与空间地理信息. 2023(11): 70-73+77 . 百度学术
其他类型引用(8)