FY-3D卫星MERSI-Ⅱ热红外通道劈窗仿真计算简化方法

吴文菲, 李正强, 姚前, 周士凯, 许华, 陈震霆, 江启峰

吴文菲, 李正强, 姚前, 周士凯, 许华, 陈震霆, 江启峰. FY-3D卫星MERSI-Ⅱ热红外通道劈窗仿真计算简化方法[J]. 红外技术, 2025, 47(4): 410-420.
引用本文: 吴文菲, 李正强, 姚前, 周士凯, 许华, 陈震霆, 江启峰. FY-3D卫星MERSI-Ⅱ热红外通道劈窗仿真计算简化方法[J]. 红外技术, 2025, 47(4): 410-420.
WU Wenfei, LI Zhengqiang, YAO Qian, ZHOU Shikai, XU Hua, CHEN Zhenting, JIANG Qifeng. Simplified Calculation Method of FY-3D Satellite MERSI-Ⅱ Thermal Infrared Channel Split-Window Simulation[J]. Infrared Technology , 2025, 47(4): 410-420.
Citation: WU Wenfei, LI Zhengqiang, YAO Qian, ZHOU Shikai, XU Hua, CHEN Zhenting, JIANG Qifeng. Simplified Calculation Method of FY-3D Satellite MERSI-Ⅱ Thermal Infrared Channel Split-Window Simulation[J]. Infrared Technology , 2025, 47(4): 410-420.

FY-3D卫星MERSI-Ⅱ热红外通道劈窗仿真计算简化方法

详细信息
    作者简介:

    吴文菲(1999-),女,硕士研究生,主要从事红外定量遥感方面的研究。E-mail: wuwenfei2024@163.com

    通讯作者:

    李正强(1977-),男,研究员,博士,主要从事大气遥感、环境遥感方面的研究。E-mail: lizg@radi.ac.cn

  • 中图分类号: TP79

Simplified Calculation Method of FY-3D Satellite MERSI-Ⅱ Thermal Infrared Channel Split-Window Simulation

  • 摘要:

    劈窗算法广泛应用于多种卫星载荷的地表温度反演。在拟合劈窗算法系数时,大量的数据迭代模拟往往非常耗时、效率低下。因此,开发一种高效率的劈窗仿真计算简化方法具有重要意义。本文首先利用MODTRAN模拟分析背景参数的变化对总辐亮度的影响,然后在FY-3D MERSI-Ⅱ两个相邻的热红外通道下,对关键参数与总辐亮度的关系进行模拟分析,并探究关键参数耦合情形下总辐亮度的变化规律。通过仿真结果可知,在MERSI-Ⅱ热红外通道下,地表温度的变化对总辐亮度的影响大于地表发射率;大气水汽含量对总辐亮度的影响程度随着地表发射率和地表温度的增大而增大,而地表发射率和地表温度对总辐亮度的影响程度随着大气水汽含量的增大而减小;在确定劈窗算法系数时,可以通过缩小大气水汽含量的取值范围来减少仿真次数,从而提高仿真效率。当地表温度在300~320 K时,大气水汽含量的取值范围为0.5~5.5 g/cm2;当地表温度在270~300 K时,大气水汽含量的取值范围缩小为0.5~4.0 g/cm2。节省的仿真次数占总次数的比例为18.23%,仿真时间缩短了26 min。简化前后方案的劈窗系数拟合和绝对差值计算结果表明,简化方案对拟合结果的影响较小。

    Abstract:

    The split-window algorithm has been widely applied for surface temperature inversion of various satellite payloads. The iterative simulation of large datasets during the fitting of split-window algorithm coefficients is often time-consuming and inefficient. Therefore, it is important to develop a highly efficient simplification method for split-window simulation computations. MODTRAN was to simulate and analyze the impact of variations in background parameters on total radiance. Subsequently, we performed a simulation analysis of the relationship between key parameters and total radiance under two adjacent thermal infrared channels of FY-3D MERSI-Ⅱ, exploring the variation patterns of total radiance under different coupling scenarios of these key parameters. Simulation results reveal that under the MERSI-Ⅱ thermal infrared channels, changes in land surface temperature have a greater impact on total radiance than surface emissivity. The effect of the atmospheric water vapor content concentration on the total radiance increases with an increase in both the land surface emissivity and land surface temperature, whereas the influence of the land surface emissivity and land surface temperature on the total radiance decreases as the atmospheric water vapor content concentration increases. When determining the coefficients for the split-window algorithm, narrowing the range of the atmospheric water vapor content concentration can reduce the number of simulations required, thereby enhancing the efficiency. For land surface temperatures ranging from 300 to 320 K, the atmospheric water vapor content concentration should be within 0.5 to 5.5 g/cm²; for temperatures ranging from 270 to 300 K, this range narrows to 0.5 to 4.0 g/cm². The saved simulation runs account for 18.23% of the total number of runs, which reduces the simulation time by 26 min. A comparison of the split-window coefficient fitting and absolute difference calculation results before and after simplification shows that the simplified scheme has minimal impact on the fitting outcomes.

  • 图  1   热红外大气辐射传输过程示意图[19]

    Figure  1.   Illustration of atmospheric radioactive transfer process in the thermal infrared spectrum[19]

    图  2   不同大气水汽含量下的总辐亮度和相对变化百分比

    Figure  2.   The total radiance and the relative percentage change at different atmospheric water vapor content

    图  3   不同大气廓线下总辐亮度与相对变化百分比的双y轴图:(a)、(b)、(c)和(d)分别表示828、855、909和1216 cm-1处总辐亮度与相对变化百分比随不同大气廓线的变化

    Figure  3.   Dual y-axis plots of total radiance and relative percentage change under different atmospheric profiles: (a), (b), (c) and (d) respectively represent the changes of total radiance and relative percentage change at 828, 855, 909, and 1216 cm-1 with different atmospheric profiles

    图  4   不同地表温度下的总辐亮度和相对变化百分比

    Figure  4.   The total radiance and the relative percentage change at different land surface temperature

    图  5   不同地表发射率的总辐亮度和相对变化百分比

    Figure  5.   The total radiance and the relative percentage change at different land surface emissivities

    图  6   在MERSI-Ⅱ热红外通道下大气水汽含量与总辐亮度的关系

    Figure  6.   Relationship between atmospheric water vapor content and total radiance on the MERSI-Ⅱ thermal infrared channel

    图  7   在MERSI-Ⅱ热红外通道下地表温度与总辐亮度的关系

    Figure  7.   Relationship between land surface temperature and total radiance on the MERSI-Ⅱ thermal infrared channel

    图  8   在MERSI-Ⅱ热红外通道下地表发射率与总辐亮度的关系

    Figure  8.   Relationship between land surface emissivity and total radiance on the MERSI-Ⅱ. thermal infrared channel

    图  9   地表温度与地表发射率耦合作用下的总辐亮度热力图

    Figure  9.   The heatmaps of total radiance under coupling of land surface temperature and land surface emissivity

    图  10   大气水汽含量与地表发射率耦合作用下的总辐亮度热力图

    Figure  10.   The heatmaps of total radiance under coupling of atmospheric water vapor content and land surface emissivity

    图  11   大气水汽含量与地表温度耦合作用下的总辐亮度热力图

    Figure  11.   The heatmaps of total radiance under coupling of atmospheric water vapor content and land surface emissivity

    图  12   非线性劈窗算法系数随观测天顶角正割值的变化

    Figure  12.   Coefficients of non-liner split-window algorithm vary with the secant of observation zenith angle

    表  1   辐射传输计算的参数设置

    Table  1   Parameter settings for radioactive transfer calculation

    Parameters Setting
    View zenith angle/(°) 0−60, interval 5
    Atmospheric profile Mid-Latitude Summer (45 North Latitude)
    Water vapor content/(g/cm2) 2.5
    O3 column concentrations/(g/cm2) 0.0005
    CO2 mixture ratio/ppmv 420
    Surface temperature/K 300
    Surface emissivity 0.98
    Wavenumber range/(cm−1) 714−1250
    Digital elevation model/km 0.002
    Sensor altitude/km 700
    下载: 导出CSV

    表  2   方案1和方案2之间的对比

    Table  2   Comparison between scheme 1 and scheme 2

    Scheme 1 Scheme 2
    Parameter setting LST/K 270-320 270-300 300-320
    WVC/(g/cm2) 0.5-5.5 0.5-4.0 0.5-5.5
    Simulation times 10201 8341
    Simulation time/min 143 117
    下载: 导出CSV

    表  3   方案1和方案2的劈窗系数的绝对差值

    Table  3   Absolute difference of split-window coefficients between Scheme 1 and Scheme 2

    1/cos(VZA) a0 a1 a2 a3 a4 a5 a6 a7
    1.00 22.9737 0.0794 0.0206 0.0227 0.4905 5.3143 4.4661 0.1420
    1.01 23.1131 0.0799 0.0205 0.0230 0.4863 5.3274 4.4914 0.1428
    1.02 23.5530 0.0814 0.0203 0.0240 0.4729 5.3657 4.5633 0.1449
    1.05 24.3528 0.0842 0.0198 0.0259 0.4482 5.4336 4.6724 0.1483
    1.09 25.6365 0.0886 0.0190 0.0286 0.4082 5.5332 4.7987 0.1529
    1.15 27.6089 0.0954 0.0179 0.0327 0.3468 5.6699 4.9094 0.1583
    1.24 30.6300 0.1059 0.0162 0.0383 0.2551 5.8456 4.9474 0.1638
    1.35 35.2774 0.1221 0.0135 0.0459 0.1240 6.0530 4.8112 0.1683
    1.49 42.3907 0.1471 0.0089 0.0552 0.0471 6.2305 4.2545 0.1689
    1.70 51.3369 0.1788 0.0008 0.0627 0.1793 5.9706 2.3816 0.1567
    2.00 7.9926 0.0265 0.0069 0.0292 0.6625 1.0401 6.2706 0.0934
    下载: 导出CSV
  • [1]

    Martha C. Anderson, Richard G. Allen, Anthony Morse, et al. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources [J]. Remote Sensing of Environment, 2012, 122: 50-65. DOI: 10.1016/j.rse.2011.08.025

    [2]

    SUN Liang, CHEN Zhongxin, GAO Feng, et al. Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data [J]. Computers & Geosciences, 2017, 105: 10-20.

    [3]

    LI Ziying, HAN Yang, HAO Tianyi. Assessing the consistency of remotely sensed multiple drought indices for monitoring drought phenomena in continental China [J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5490-5502. DOI: 10.1109/TGRS.2020.2966658

    [4]

    Yuhei Yamamoto, Hirohiko Ishikawa. Influence of urban spatial configuration and sea breeze on land surface temperature on summer clear-sky days [J]. Urban Climate, 2020, 31: 1-10.

    [5] 崔庆岗, 吴树明, 殷显阳, 等. 卫星热红外遥感技术在东平县地热资源调查中的应用[J]. 化工矿产地质, 2023, 45(2): 180-187. DOI: 10.3969/j.issn.1006-5296.2023.02.013

    CUI Qinggang, WU Shuming, YIN Xianyang, et al. Application of the satellite thermal infrared remote sensing technology in geothermal resource survey in Dongping County[J]. Geology of Chemical Minerals, 2023, 45(2): 180-187. DOI: 10.3969/j.issn.1006-5296.2023.02.013

    [6] 郭圆新, 梁琨, 徐杨睿, 等. 基于直接散射光谱的多环境要素激光遥感方法[J]. 光电工程, 2024, 51(3): 52-76.

    GUO Yuanxin, LIANG Kun, XU Yangrui, et al. Multiple environmental elements laser remote sensing method based on direct scattering spectrum[J]. Opto-Electronic Engineering, 2024, 51(3): 52-76.

    [7] 张璐, 张兴赢, 曹西凤, 等. 大气环境监测卫星星载激光雷达二氧化碳遥感反演方法及精度验证[J]. 上海航天(中英文), 2023, 40(3): 30-36.

    ZHANG Lu, ZHANG Xingying, CAO Xifeng, et al. Inversion method for XCO2 remote sensing by spaceborne lidar onboard atmospheric environmental monitoring satellite and its accuracy validation[J]. Aerospace Shanghai(Chinese & English), 2023, 40(3): 30-36.

    [8]

    YE Xin, REN Huazhong, ZHU Jinshun, et al. Land surface temperature retrieval based on thermal infrared channel decomposed split-window algorithm [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4971-4979. DOI: 10.1109/JSTARS.2022.3181505

    [9]

    LI Zhaoliang, WU Hua, WANG Ning, et al. Land surface emissivity retrieval from satellite data [J]. International Journal of Remote Sensing, 2013, 34(9-10): 3084-3127. DOI: 10.1080/01431161.2012.716540

    [10]

    Jordi Cristóbal, Juan C Jiménez-Muñoz, Anupma Prakash, et al. An improved single-channel method to retrieve land surface temperature from the landsat-8 thermal band[J]. Remote Sensing, 2018, 10(3): 431. DOI: 10.3390/rs10030431

    [11]

    ZHAO Junli, TANG Bohui, OUYANG Sima. A nonlinear split-window algorithm for retrieving land surface temperatures from Fengyun-4B thermal infrared data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-12.

    [12]

    MA Chenyang, QIAN Yonggang, LI Kun, et al. Temperature and emissivity retrieval from hyperspectral thermal infrared data using dictionary-based sparse representation for emissivity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-16.

    [13]

    Larry M. McMillin. Estimation of sea surface temperatures from two infrared window measurements with different absorption [J]. Journal of Geophysical Research, 1975, 80(36): 5113-5117. DOI: 10.1029/JC080i036p05113

    [14]

    John C Price. Land surface temperature measurements from the split window channels of the NOAA 7 advanced very high resolution radiometer[J]. Journal of Geophysical Research Atmospheres, 1984, 89(D5): 7231-7237. DOI: 10.1029/JD089iD05p07231

    [15]

    Becker F. The impact of spectral emissivity on the measurement of land surface temperature from a satellite[J]. International Journal of Remote Sensing, 1987, 8(10): 1509-1522. DOI: 10.1080/01431168708954793

    [16]

    TANG Bohui, BI Yuyun, LI Zhaoliang, et al. Generalized split-window algorithm for estimate of land surface temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) data [J]. Sensors, 2008, 8(2): 933-951. DOI: 10.3390/s8020933

    [17]

    CHEN Du, REN Huazhong, QIN Qiming, et al. A practical split-window algorithm for estimating land surface temperature from Landsat 8 Data [J]. Remote Sensing, 2015, 7(1): 647-665. DOI: 10.3390/rs70100647

    [18] 程元良, 吴骅, 李召良, 等. FY-3D MERSI-Ⅱ地表温度遥感反演与验证[J]. 遥感学报, 2021, 25(8): 1792-1807.

    CHENG Yuanliang, WU Hua, LI Zhaoliang, et al. Retrieval and validation of the land surface temperature from FY-3D MERSI-Ⅱ[J]. National Remote Sensing Bulletin, 2021, 25(8): 1792-1807.

    [19] 姚前, 李正强, 樊程, 等. 中红外大气强吸收波段地气杂波全球空间分布研究[J]. 光谱学与光谱分析, 2024, 44(11): 1-17.

    YAO Qian, LI Zhengqiang, FAN Cheng, et al. Study on global spatial distribution of surface-atmosphere clutter in mid-infrared atmospheric strong absorption band[J]. Spectroscopy and Spectral Analysis, 2024, 44(11): 1-17.

    [20]

    WAN Zhengming. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product[J]. Remote Sensing of Environment, 2014, 140: 36-45.

    [21] 姚前, 许华, 樊程, 等. 一种应用于卫星中红外遥感的辐射传输简化计算方案[J]. 红外与毫米波学报, 2024, 43(3): 377-392.

    YAO Qian, XU Hua, FAN Cheng, et al. A simplified parameterization scheme of mid-infrared radiative transfer for satellite remote sensing[J]. Journal of Infrared and Millimeter Waves, 2024, 43(3): 377-392.

  • 期刊类型引用(5)

    1. 吴耀炜,龚建周,陈智勇,袁海威,林颖怡. 一种DeepLabv3+结构改进的高分遥感影像红树林边界识别方法. 广州大学学报(自然科学版). 2024(03): 93-104 . 百度学术
    2. 刘思言,王春月,赵宇恒,秦磊,付璐,于海洋. 吉林一号卫星在查干湖国家级自然保护区人类活动监测中的应用. 卫星应用. 2023(03): 55-60 . 百度学术
    3. 曹宏徙. 基于神经网络的多源遥感图像语义分割系统设计. 信息记录材料. 2023(05): 189-191+195 . 百度学术
    4. 冯一军,陈霖,梁雄乾,王志虎,王鑫. 无人机智能遥感信息提取技术研究与应用. 计算机测量与控制. 2023(06): 231-237 . 百度学术
    5. 田普光. 基于对象上下文信息的无人机影像建筑物提取. 测绘与空间地理信息. 2023(11): 70-73+77 . 百度学术

    其他类型引用(8)

图(12)  /  表(3)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  11
  • PDF下载量:  25
  • 被引次数: 13
出版历程
  • 收稿日期:  2024-09-02
  • 修回日期:  2024-10-13
  • 刊出日期:  2025-04-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日