基于改进Transformer网络的红外图像去模糊技术

Infrared Image Deblurring Using Enhanced Transformer Networks

  • 摘要: 为解决红外成像过程中平移运动模糊、径向运动模糊及湍流模糊等带来的红外图像质量降低问题,该文提出了基于变形采样和多方向滑窗(Deformable Multi-direction Shifting Transformer,DMST)的红外图像去模糊神经网络。该方法通过设计变形采样和多方向的自注意力窗口滑窗机制,使得自注意力窗口更加贴合图像中不规则信息分布,同时提升网络对全局特征的交互感知。在平移运动模糊、径向运动模糊和湍流模糊3种红外数据集上,所提出方法的峰值信噪比(Peak Signal to Noise Ratio, PSNR)分别为35.69 dB、30.19 dB、33.55 dB,结构相似性(Structure Similarity Index Measure, SSIM)分别为0.9566、0.8882、0.9230。实验结果表明该方法针对红外图像的去模糊能力优于近年先进的去模糊方法。

     

    Abstract: To address the degradation of infrared images caused by translation motion, radial motion, and turbulence blurs, a transformer-based infrared image deblurring neural network using deformable sampling and multidirectional shifting windows (DMST) is proposed. With deformable sampling and a multi-direction window shifting mechanism, the proposed method allows self-attention windows to better conform to the irregular distribution of informative features in images while enhancing the network's perception of interactions with global features. On three infrared datasets featuring translation motion, radial motion, and turbulence blurs, the proposed method achieves peak signal-to-noise ratios (PSNR) of 35.69, 30.19, and 33.55 dB, respectively, and structure similarity index measure (SSIM) values of 0.9566, 0.8882, and 0.9230, respectively. The experimental results indicate that compared to the advanced deblurring methods reported in recent years, the proposed method exhibits superior deblurring performance for infrared images.

     

/

返回文章
返回