壁式喷头红外降温特性试验研究

Experimental Analysis of Infrared Cooling Characteristics of Wall-attached Nozzle

  • 摘要: 随着红外探测技术的发展,水幕成为舰船红外隐身研究的焦点,而对于水幕降温与水雾遮蔽两种水幕效应对红外探测特性的影响及其内在的物理机制目前尚未形成统一的认识。针对舰船8~14 μm波段的红外辐射问题,基于典型的壁式喷嘴建立壁式喷头试验系统,研究了不同喷射距离、不同喷射总流量以及不同温度钢板对壁式喷头的红外降温特性的影响。试验结果表明,当目标钢板处于中空区和中空区与覆盖区交界,红外降温速率分别为2.03℃/min和3.31℃/min,处于覆盖区时,喷射存在非重叠区和重叠区,非重叠区降温速率最大为6.18℃/min,其同半径距离下的重叠区降温速率为6.54℃/min,且此时重叠区的红外降温时长为40 s,比非重叠区缩短了32 s。喷射总流量的增加对钢板的降温表现出明显的增益性,并且钢板初始温度越高,壁式喷头对其的降温速率越快。此外,水幕内外的钢板温差最大可达8.49℃,表明壁式喷头形成的水幕喷淋能有效遮掩钢板表面温度,降低舰船表面的红外可探测性,实现水幕喷淋隐身。该研究结果可对提高舰船的红外隐身性能提供技术参考。

     

    Abstract: Aiming at the problem of infrared radiation in the 8-14 μm band of ships, a water curtain spray method was adopted to attenuate the infrared radiation intensity of a target, and an infrared thermal imager was employed to build a wall attached nozzle test system. Through comparative design experiments, the influences of different spraying distances, total spray flow rates, and temperatures of the steel plates on the infrared cooling characteristics of the wall nozzles were analyzed. The test results show that when the target steel plate is in the hollow area, and the boundary between the hollow area and the coverage area, the infrared cooling rates are 2.03 and 3.31℃/min, respectively. When the target steel plate was in the coverage area, there were non-overlapping and overlapping areas in the spray. The maximum cooling rate of the non-overlapping area was 6.18℃/min, and the cooling rate of the overlapping area under the same radius was 6.54℃/min. The infrared cooling time in the overlapping zone was 40 s, which was 32 s shorter than that in the non-overlapping zone. Moreover, an increase in the total spray flow resulted in a significant increase in cooling of the steel plate. The higher the initial temperature of the steel plate, the higher the cooling rate of the wall nozzle. In addition, the temperature difference between the steel plates inside and outside the water curtain can reach up to 8.49℃. Studies have shown that the water curtain spray formed by a wall-attached nozzle can effectively cover the surface temperature of the steel plate, reduce the infrared detectability of the ship surface, and realize water curtain spray stealth. These results provide a technical reference for improving the infrared stealth performance of ships.

     

/

返回文章
返回