Data Preprocessing Method for Infrared Spectra Analysis of Natural Gas Components
-
摘要: 利用红外光谱分析仪对天然气组分进行组分分析时所获得光谱信号往往会受杂散光、噪声、基线漂移等因素的干扰,从而影响最终定量分析结果,故需要在建模前对原始光谱进行预处理。为解决仪器测量光谱图的噪声干扰问题,本文提出一种Savitzky-Golay平滑法结合sym6小波函数软阈值去噪法对光谱图进行预处理。将传统的预处理方法与SG平滑法结合小波函数法进行对比分析。结果表明,以SG平滑法结合sym6小波函数软阈值去噪法对光谱图进行预处理,其拟合优度数值最高为0.98652,残差平方和数值最低为5.50694,证明使用该方法后的函数分峰拟合效果最佳,处理效果优于传统方法。Abstract: When using infrared spectroscopy to analyze the components of natural gas, the obtained spectral signals often contain interference from stray light, noise, baseline drift, and other factors, which affects the resulting quantitative analysis. Therefore, it is necessary to preprocess the original spectrum before modeling. As a potential solution, an SG smoothing method combined with the soft threshold denoising method of the sym6 wavelet function was proposed to preprocess the spectrogram. The traditional preprocessing method and the proposed method are compared and analyzed. The results show that when the proposed method is used to preprocess the spectrogram, the highest goodness of fit value is 0.98652, and the lowest residual sum of squares value is 5.50694, which proves that the function peak fitting effect is the best after using this method, and the processing effect is better than that of the traditional method.
-
Keywords:
- natural gas /
- pretreatment /
- infrared spectra /
- denoising
-
-
表 1 SG平滑+sym6小波变换与传统方法性能指标对比
Table 1 Performance index comparison of SG smoothing + sym6 wavelet transform and traditional methods
Pretreatment method Fitting performance evaluation index Various fitting parameters R-Square SSE xc w FWHM A Area SG smoothing method(N=20) 0.97405 11.79833 2834.49055 39.20784 92.32725 5.59823 550.1827 2981.79713 43.97818 103.56054 2.81837 310.68118 Median filter 0.97146 14.0104 2837.10274 45.2766707 106.618 5.27621 598.804 2987.60154 37.49498 88.29445 2.94599 296.87252 SG(N=20)+db3 3-layer decomposition wavelet 0.9732 11.82987 2833.61284 38.94472 91.7078 5.60191 546.85842 2982.83007 47.12747 110.97672 2.74588 324.37366 SG(N=20)+sym6 4-layer decomposition wavelet 0.98652 5.50694 2836.78074 47.98166 112.9881 5.03243 605.2586 2988.78528 34.83569 82..03177 2.8878 252.1598 -
[1] JIAO Y, LI Z, CHEN X, et al. Preprocessing methods for near-infrared spectrum calibration[J]. Journal of Chemometrics, 2020, 34(11): e3306.
[2] YANG J, DU L, GONG W, et al. Analyzing the performance of the first-derivative fluorescence spectrum for estimating leaf nitrogen concentration[J]. Optics Express, 2019, 27(4): 3978. DOI: 10.1364/OE.27.003978
[3] LI Y, HUANG Y, XIA J, et al. Quantitative analysis of honey adulteration by spectrum analysis combined with several high-level data fusion strategies[J]. Vibrational Spectroscopy, 2020, 108: 103060. DOI: 10.1016/j.vibspec.2020.103060
[4] 第五鹏瑶, 卞希慧, 王姿方, 等. 光谱预处理方法选择研究[J]. 光谱学与光谱分析, 2019, 39(9): 2800-2806. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201909027.htm DIWU Pengyao, BIAN Xi Hui, WANG Zifang, et al. Selection of spectral pretreatment methods[J]. Spectroscopy and Spectral Analysis, 2019, 39 (9): 2800-2806 https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201909027.htm
[5] Bastiaansen W, Klein S, Steegers㏕heunissen R P, et al. VP24.02: towards a novel human embryonic brain atlas: fully automated preprocessing of prenatal ultrasound using artificial intelligence[J]. Ultrasound in Obstetrics and Gynecology, 2020, 56(S1): 159-159.
[6] HUANG X, HUANG C, ZHAI G, et al. Data processing method of multibeam bathymetry based on sparse weighted LS-SVM machine algorithm[J]. IEEE Journal of Oceanic Engineering, 2019, 45(4): 1538-1551.
[7] DING Y, ZHANG W, ZHAO X, et al. A hybrid random forest method fusing wavelet transform and variable importance for the quantitative analysis of K in potassic salt or using laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(6): 1131-1138. DOI: 10.1039/D0JA00010H
[8] ZHANG J, WEN H, TANG L. Improved smoothing frequency shifting and filtering algorithm for harmonic analysis with systematic error compensation[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9500-9509. DOI: 10.1109/TIE.2019.2892664
[9] 杨帆, 王鹏, 张宁超, 等. 一种基于小波变换的改进滤波算法及其在光谱去噪方面的应用[J]. 国外电子测量技术, 2020, 39(8): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GWCL202008021.htm YANG Fan, WANG Peng, ZHANG Ningchao, et al. An improved filtering algorithm based on wavelet transform and its application in spectral denoising[J]. Foreign Electronic Measurement Technology, 2020, 39 (8): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GWCL202008021.htm
[10] Mahajan G R, Das B, Gaikwad B, et al. Monitoring properties of the salt-affected soils by multivariate analysis of the visible and near- infrared hyperspectral data[J]. Catena, 2021, 198: 105041. DOI: 10.1016/j.catena.2020.105041
[11] 侯培国, 李宁, 常江, 等. SG平滑和IBPLS联合优化水中油分析方法的研究[J]. 光谱学与光谱分析, 2015, 35(6): 1529-1533. DOI: 10.3964/j.issn.1000-0593(2015)06-1529-05 HOU Peiguo, LI Ning, CHANG Jiang, et al. Research on SG smoothing and IBPLS joint optimization of oil-in-water analysis method[J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1529-1533. DOI: 10.3964/j.issn.1000-0593(2015)06-1529-05
[12] Zikiou N, Lahdir M, Helbert D. Hyperspectral image classification using graph-based wavelet transform[J]. International Journal of Remote Sensing, 2020, 41(7): 2624-2643. DOI: 10.1080/01431161.2019.1694194
[13] Bunaciu A A, Aboul-Enein H Y. Adulterated drug analysis using FTIR spectroscopy[J]. Applied Spectroscopy Reviews, 2021, 56(5): 423-437. DOI: 10.1080/05704928.2020.1811717
[14] LIU F, ZHANG Y, Yildirim T, et al. Signal denoising optimization based on a Hilbert-Huang transform-triple adaptable wavelet packet transform algorithm[J]. EPL (Europhysics Letters), 2019, 124(5): 54002. DOI: 10.1209/0295-5075/124/54002
[15] ZHANG M, LU C, LIU C. Improved double-threshold denoising method based on the wavelet transform[J]. OSA Continuum, 2019, 2(8): 2328-2342. DOI: 10.1364/OSAC.2.002328
-
期刊类型引用(19)
1. 姜迈,沙贵君,李宁. 基于引导滤波与双树复小波变换的红外与可见光图像融合. 激光与光电子学进展. 2023(10): 110-120 . 百度学术
2. 曹海玲,王正海,秦昊洋,孙袁超,尹国盼. 基于加权融合TIR数据的LST反演与硅化信息提取——以广东仁差盆地铀多金属矿区为例. 遥感学报. 2023(07): 1691-1701 . 百度学术
3. 王红君,杨一鸣,赵辉,岳有军. 基于PIE和CGAN的无人农机红外与可见光图像融合. 红外技术. 2023(12): 1223-1229 . 本站查看
4. 王红君,杨一鸣,赵辉,岳有军. 基于PIE和CGAN的无人农机红外与可见光图像融合. 红外技术. 2023(11): 1223-1229 . 本站查看
5. 汪澎,盛兆哲,黄智远. 铁路电力系统场站异常温升极早期预警技术与应用综述. 电工技术. 2023(24): 122-124 . 百度学术
6. 魏亚南,曲怀敬,王纪委,徐佳,张志升,谢明,张汉元. 基于NSCT和卷积稀疏表示的红外与可见光图像融合. 计算机与数字工程. 2022(02): 276-283 . 百度学术
7. 李明明,王新赛,冯小二. 基于K-means聚类与NSCT的图像融合算法. 火力与指挥控制. 2022(02): 146-151 . 百度学术
8. 李爱娟,巩春鹏,黄欣,曹家平,刘刚. 自动驾驶汽车目标检测方法综述. 山东交通学院学报. 2022(03): 20-29 . 百度学术
9. 杨涛,闫杰. 乡村建筑群形态结构的演变过程三维仿真. 计算机仿真. 2022(07): 238-242 . 百度学术
10. 陈黎艳,熊强强,曾美琳. 基于改进逆滤波的红外图像目标信息快速复原研究. 激光杂志. 2022(08): 164-168 . 百度学术
11. 高银花,陈进,季霞. 基于虚拟现实技术的光照变化场景三维建模研究. 激光杂志. 2022(11): 204-209 . 百度学术
12. 黄艺,龚文辉. 虚拟全景影像数据FCM聚类优化仿真. 计算机仿真. 2022(11): 220-223+239 . 百度学术
13. 喻凌峰. 基于多传感器数据融合的隧道火灾监测报警技术研究. 隧道建设(中英文). 2022(S2): 261-266 . 百度学术
14. 杨孙运,奚峥皓,王汉东,罗晓,阚秀. 基于NSCT和最小化-局部平均梯度的图像融合. 红外技术. 2021(01): 13-20 . 本站查看
15. 刘佳,李登峰. 马氏距离与引导滤波加权的红外与可见光图像融合. 红外技术. 2021(02): 162-169 . 本站查看
16. 林剑萍,廖一鹏. 结合分数阶显著性检测及量子烟花算法的NSST域图像融合. 光学精密工程. 2021(06): 1406-1419 . 百度学术
17. 王才东,刘丰阳,李志航,陈志宏,程岩,郑华栋. 基于双目视觉特征点匹配的图像拼接方法研究. 激光与光电子学进展. 2021(12): 357-365 . 百度学术
18. 薛彬,吴志生,孟庆森. 基于多特征组合的光学元件表面疵病检测. 激光杂志. 2021(12): 108-113 . 百度学术
19. 包达尔罕,高文炜,杨金颖. 基于混合l_0l_1层分解的红外光强与偏振图像融合算法. 红外技术. 2020(07): 676-682+701 . 本站查看
其他类型引用(26)