Research Progress and Application of Polarization Imaging Technology
-
摘要: 偏振成像技术的优势是把信息量从3个自由度,即光强、光谱和空间,扩充到7个自由度,包括光强、光谱、空间、偏振度、偏振方位角、偏振椭率和旋转方向,这种观测信息量的丰富有利于提高对研究目标探测的精确度。本文首先介绍在近几十年内偏振成像技术在国内外的研究进展,其次介绍偏振技术在军事及民用领域的典型应用,最后对我国在偏振成像技术方面存在的问题给出合理的建议。Abstract: The advantage of polarization imaging technology is that it expands the amount of information from three degrees of freedom, namely light intensity, spectrum, and space, to seven degrees of freedom, including light intensity, spectrum, space, degree of polarization, polarization azimuth, polarization ellipticity, and direction of rotation. This richness of observational information is conducive to improving the accuracy of research target detection. This article first introduces the research progress of polarization imaging technology at home and abroad in recent decades, then introduces the typical applications of polarization technology in military and civilian fields, and finally provides reasonable suggestions on the problems of polarization imaging technology in our country.
-
Keywords:
- polarization characteristics /
- target detection /
- polarization /
- target recognition
-
0. 引言
湿法烟气脱硫利用石灰石浆液吸收烟气中的SO2,具有高效率和高可靠性等优势,已成为当前火电厂和化工厂脱硫的主力技术[1]。但是火电厂运行过程中,由于煤燃烧和SO2氧化,特别是在选择性催化还原脱销系统中催化剂作用下,SO2会更有利于氧化成生成SO3,造成烟气中SO3浓度显著增加[2-3]。烟气进入脱硫塔系统后,温度迅速冷却至酸露点以下,形成细小SO3酸雾,而单脱硫塔的SO3脱除效率仅为30%~40%[4]。
烟气中的SO3、SO2,HF及其它酸性物质会导致塔体金属发生化学腐蚀,脱硫塔内还存在电化学腐蚀、磨蚀、结晶腐蚀、垢下腐蚀和氯离子腐蚀[5]。在以上多种方式的共同作用下,受到内涂玻璃鳞片、聚烯烃共聚物、改性聚脲或纳米复合涂料等物质防护的脱硫塔仍可能发生腐蚀。
目前,对脱硫塔的检测主要有外观损伤、钢材厚度、力学性能、焊缝缺陷检测和构件变形等项目[6]。以上检测项目能够有效对停机后的脱硫塔健康状态进行评测。但是,对运行中的脱硫塔腐蚀状态进行有效检测未见文献报道。结合脱硫塔运行参数和结构参数,本文提出了采用传热学反演的方法根据表面红外热像进行运行中脱硫塔壁厚定量检测,并以某厂的烟气脱硫塔为对象进行了实验验证。
1. 脱硫塔传热模型
研究对象为图 1所示的脱硫塔,其内部环境复杂,无法布置有效的温度测量装置;脱硫过程是一个包含了传热、传质和化学反应的复杂过程,难以准确地用数学语言描述。为了建立脱硫塔的传热模型,本文进行以下简化:
1)脱硫塔为轴对称结构,内壁面热流沿周向分布均匀;
2)脱硫塔内部有玻璃鳞片防腐涂层,涂层质地均匀且热物性参数为各向同性;
3)烟气和石灰浆液对脱硫塔的传热,可等效为对脱硫塔内壁施加有沿轴向分布的加热热流;
4)忽略脱硫塔内部喷嘴和支撑结构对脱硫塔壁面温度分布的影响;
5)忽略脱硫塔内壁和防腐涂层的接触热阻;
6)忽略脱硫塔的轴向导热;
7)脱硫塔的温度场为稳态。
脱硫塔浆液区是腐蚀的重灾区,本文以浆液区段为研究对象,简化后的脱硫塔浆液区如图 2所示,具体几何参数及热物性参数见表 1。脱硫塔内壁s1存在轴向分布热流,外表面s2与环境存在对流换热,且s2面上的温度可以直接测量,其他表面s3绝热。记x=(ϕ, θ, z)为空间坐标向量,脱硫塔温度场的控制方程为:
表 1 脱硫塔几何参数及热物性参数Table 1. Geometric parameters and thermophysical parameters ofdesulfurization towerMaterial Thickness /
mmDiameter/
mmThermal conductivity/
[W/(m·K)]Anticorrosive
coating4 5520 0.35 The tower wall 14 5528 48.85 $$\frac{1}{r}\frac{\partial }{{\partial r}}(\lambda (\mathit{\boldsymbol{x}})r\frac{{\partial T(\mathit{\boldsymbol{x}})}}{{\partial r}}) + \frac{1}{{{r^2}}}\frac{\partial }{{\partial \varphi }}(\lambda (\mathit{\boldsymbol{x}})\frac{{\partial T(\mathit{\boldsymbol{x}})}}{{\partial \varphi }}) + \frac{\partial }{{\partial z}}(\lambda (\mathit{\boldsymbol{x}})\frac{{\partial T(\mathit{\boldsymbol{x}})}}{{\partial z}}) = 0$$ (1) 边界条件为:
$$ - \lambda (\mathit{\pmb{x}})\frac{{\partial T(\mathit{\pmb{x}})}}{{\partial n}} = q(z)\;\quad \mathit{\pmb{x}} \in {s_1}$$ (2) $$ - \lambda (\mathit{\pmb{x}})\frac{{\partial T(\mathit{\pmb{x}})}}{{\partial n}} = h(T(\mathit{\pmb{x}}) - {T_f})\;\quad \mathit{\pmb{x}} \in {s_2}$$ (3) $$ - \lambda ({\mathit{\pmb{x}}})\frac{{\partial T({\mathit{\pmb{x}}})}}{{\partial n}} = 0\;\;\;\;\;{\mathit{\pmb{x}}} \in {s_3}$$ (4) 式中:q(z)为内壁沿轴向z的热流密度分布;h为表面s2的对流换热系数;Tf为环境温度;n为表面的外法线方向。
若已知脱硫塔的几何结构和热边界条件,利用有限元法(finite element method, FEM)求解公式(1)~(4),可以确定脱硫塔的温度场T(x),作为壁厚检测的基础。
2. 基于反问题的脱硫塔壁厚检测
运行中脱硫塔壁厚d是影响脱硫塔表面温度分布的关键因素之一,如果脱硫塔壁面腐蚀减薄,则传热热阻减小,在腐蚀部位对应的塔外表面形成局部高温区域,如图 1(b)所示。因此,可通过求解导热反问题根据脱硫塔表面红外热像进行脱硫塔壁厚检测。
2.1 壁厚检测方案
在如图 2所示的脱硫塔表面热像图中,选取高温区域的K个温度测点,依据此测量信息Tkmea(k=1, 2, …, K)采用共轭梯度方法(conjugate gradient method,CGM)求解多变量稳态传热反问题[7-8],进行壁厚d的反演;由于脱硫塔为薄壁结构,热扩散效应较弱,则外表面高温区域可看作与内壁腐蚀区域接近。为了便于问题讨论,在本文中,内壁腐蚀区域用圆柱近似。
然而,壁厚反演过程中正问题的计算需要已知脱硫塔内壁热边界条件如热流q(z)。而内壁热流q(z)难以直接测量。如果直接同时反演壁厚和内壁热流q(z),可能因为测量信息不能够同时对壁厚和热流具有较大的灵敏度,造成检测系统的病态程度加剧。
因此,检测方案包括了两步:先进行内壁热流定量识别,再定量识别壁厚。内壁热流可采用CGM反演得到:在脱硫塔外表面高温区域附近同等高度的温度正常区域沿周向选取M个测点,以该测点的温度信息Tmmea(m=1, 2, …, M)反演该位置处的脱硫塔内壁热流q;内壁热流沿高度方向变化,但是周向分布均匀,以第一步反演得到的内壁热流q作为壁厚反演中正问题的已知热边界条件,以高温区域的温度测量信息作为壁厚反演的依据,提高了测量信息对壁厚的灵敏度,有利于削弱壁厚检测问题的病态程度。
2.2 共轭梯度算法
利用共轭梯度算法求解壁厚反问题,通过迭代优化使得目标函数J(d)足够小或者达到最大迭代步imax,对应的壁厚d即为所求。目标函数J(d)可表示为:
$$J({d_i}) = \sum\limits_{k = 1}^K {{{[T_k^{{\rm{cal}}}({d_i}) - T_k^{{\rm{mea}}}]}^2}} \le \varepsilon $$ (5) 式中:Tkmea为在脱硫塔红外热像图上提取的第K个温度测量值;di为第i次迭代得到的壁厚的猜测值;Tkcal(di)是根据di进行正问题计算得到的第k个测量位置处的温度计算值。K为在红外热像图上提取的温度测量值的数目。停机标准ε可由下式表示:
$$ \varepsilon = K{\sigma ^2} $$ (6) 式中:σ为测量误差的标准差。
CGM沿着已知点处的梯度所构造出的共轭方向迭代搜索目标函数的极小点,迭代过程中对壁厚猜测值的修正可表示为:
$$ {d_i}_{ + 1} = {d_i} - {\alpha _i}{\mathit{\boldsymbol{\gamma }}_i} $$ (7) 式中:αi为搜索步长;γi为搜索方向。
搜索步长αi表示为:
$${\alpha _i}{\rm{ = }}\sum\limits_{k = 1}^K {[T_k^{{\rm{cal}}}({d_i}) - T_k^{{\rm{mea}}}]\nabla T_k^{{\rm{cal}}}({d_i}){\mathit{\boldsymbol{\gamma }}_i}} /\sum\limits_{k = 1}^K {\nabla T_k^{{\rm{cal}}}({d_i}){\mathit{\boldsymbol{\gamma }}_i}} $$ (8) 搜索方向γi可由下式表示:
$${\boldsymbol{\gamma} _i}{\rm{ = }}\nabla J({d_i}) + {\beta _i}{d_{i - 1}}$$ (9) 式中:▽J(di)为目标函数的梯度;βi为共轭系数,可根据式(10)计算:
$${\beta _i}{\rm{ = }}{\left[ {\nabla J({d_i})/\nabla J({d_{i - 1}})} \right]^2}$$ (10) 利用CGM根据红外热像图中正常区域温度反演该位置处的脱硫塔内壁热流q,其过程可参考公式(6)~(10),在此就不一一赘述。
2.3 迭代求解流程
应用CGM根据脱硫塔红外热像图反演壁厚的计算步骤如下:
1)根据红外热像图,对异常区域进行辨识;
2)反演异常区域脱硫塔内壁热流q;
3)给出壁厚初始猜测值d0;
4)通过求解公式(1)~(4),得到测点处的计算温度Tkmea(k=1, 2, …, K),并代入公式(5):
$$J({d_i}) = \sum\limits_{k = 1}^K {{{[T_k^{\rm{cal}}({d_i}) - T_k^{\rm{mea}}]}^2}} \leqslant \varepsilon $$ (11) 如果满足上述条件,di即为所求,停止迭代;否则继续;
5)按公式(8)~(10)对CGM里的参数进行更新;
6)根据公式(7)更新壁厚d的猜测值,并返回步骤4)。
3. 脱硫塔检测结果及分析
选取环境温度Tf=20℃,对流换热系数h=10 W/(m2·K)。异常区域温度测点数量K=3;正常区域温度M=2。考虑到实际测量过程中,温度测量误差是无法消除的,通过现场标定,测量误差σ=0.055℃,ε=0.01。
1)数值实验验证
为了验证检测系统的有效性和精确性,本文先进行脱硫塔内部缺陷检测的数值实验。在数值实验中,脱硫塔的热边界条件、几何参数和热物性参数均与实际过程相同,假设真实壁厚de=16 mm。
数值实验中设置不同大小的测量误差,以考察测量误差对缺陷检测结果的影响。实验结果如表 2所示。
表 2 不同测量误差时的检测结果Table 2. The detection results of the different measurementerrorsMeasurement
error σDetect wall
thickness d/mmRelative
error/ %0.055 15.92 0.50 0.1 16.35 2.19 0.2 17.14 7.13 从表 2可以看出,随着测量误差的增大,壁厚检测结果的精确性下降。如σ=0.2℃时,相对误差为7.13%,在工程上可以接受。
2)依据现场红外热像反演
① 高温区域1
如图 3所示,高温区域1的最高温度为48.2℃,区域的最大温差为1.4℃。利用基于导热反问题的脱硫塔壁厚检测方法,对高温区域1的壁厚进行计算,结果为d=14.6 mm,即该区域玻璃鳞片厚度为0.6 mm。考虑到计算误差,可判定为防腐涂层已磨损殆尽或脱落,若不处理,塔壁金属将受到快速腐蚀。在检测后30天左右,脱硫塔停机检修,发现高温区域1的防腐涂层已脱落,证实了本方法的正确性。
② 高温区域2
如图 4所示,高温区域2的最高温度为48.3℃,区域的最大温差为1.2℃。对高温区域2的壁厚进行反演:d=15.8 mm,即该区域防腐涂层厚度为1.8 mm,可判定为防腐涂层已减薄。
③ 高温区域3
如图 5所示,高温区域3的最高温度为48.1℃,区域的最大温差为3.7℃。对高温区域3的壁厚进行反演:d=6.5mm。表明该区域脱硫塔金属塔壁已发生腐蚀,减薄了7.5mm,应尽快排查、检修。
4. 结论
本文采用导热反问题的方法,根据红外热像图对运行中的脱硫塔壁厚进行了检测。其中,脱硫塔壁厚和脱硫塔内壁面热流的反演均采用共轭梯度法。首先通过数值实验,验证了本方法的可行性。然后,依据红外热像进行反演,发现脱硫塔筒体腐蚀1处,防腐涂层脱落1处,防腐涂层减薄1处。在后续的停机检修时对上述部进行了复核,均验证了上述检测结果,表明了基于表面红外热像的脱硫塔壁厚定量检测方法的有效性和准确性。
防腐涂层厚度的不一致,脱硫塔内介质分布的不均匀,红外热像仪精度以及环境等因素,可能会给壁厚检测结果引入误差,造成识别精度下降。如何提高壁厚检测精度,仍是下一步研究的方向。
-
-
[1] 李广德, 刘东青, 王义, 等. 热红外伪装技术的研究现状与进展[J]. 红外技术, 2019, 41(6): 495-503. http://hwjs.nvir.cn/article/id/hwjs201906001 LI Guangde, LIU Dongqing, WANG Yi, et al. Research status and progress of the thermal infrared camouflage technology[J]. Infrared Technology, 2019, 41(6): 495-503. http://hwjs.nvir.cn/article/id/hwjs201906001
[2] 张肃, 战俊彤, 白思克, 等. 烟雾浓度对偏振光传输特性的影响[J]. 光学学报, 2016, 36(7): 303-310. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201607040.htm ZHANG Su, ZHAN Juntong, BAI Sike, et al. Influence of smoke concentration on transmission characteristics of polarized light[J]. Acta Optica Sinica, 2016, 36(7): 303-310. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201607040.htm
[3] 王新全, 相里斌, 黄旻, 等. 成像光谱偏振仪研究进展[J]. 光谱学与光谱分析, 2011, 31(7): 1968-1974. DOI: 10.3964/j.issn.1000-0593(2011)07-1968-07 WANG Xinquan, XIANG Libin, HUANG Min, et al. Advance in imaging spectropolarimeter[J]. Spectroscopy And Spectral Analysis, 2011, 31(7): 1968-1974. DOI: 10.3964/j.issn.1000-0593(2011)07-1968-07
[4] 薛鹏. 基于AOTF分光和LCVR相位调制型光谱偏振成像技术研究[D]. 太原: 中北大学, 2017. XUE Peng. Research on spectral polarization imaging technology based on AOTF spectroscopy and LCVR phase modulation[D]. Taiyuan: North University of China, 2017.
[5] 张淳民, 穆廷魁, 颜廷昱, 等. 高光谱遥感技术发展与展望[J]. 航天返回与遥感, 2018, 39(3): 108-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803016.htm ZHANG Chunmin, MU Tingkui, YAN Tingyu, et al. Overview of hyperspectral remote sensing technology[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(3): 108-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201803016.htm
[6] 李力, 刘旭, 李海峰, 等. 分光棱镜型分振幅光度式偏振测量系统的研究[J]. 光学仪器, 1999(Z1): 159-165. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYQ1999Z1030.htm LI Li, LIU Xu, LI Haifeng, et al. Research on a beam splitting prism type amplitude-divided photometric polarization measurement system[J]. Optical Instruments, 1999(Z1): 159-165. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYQ1999Z1030.htm
[7] ZHANG Z, Blum R S. A categorization of multiscale- decompositionbased image fusion schemes with a performance study for a digital camera application[C]//Proceedings of the IEEE, 1999, 87(8): 1315.
[8] Taylor J S, Davis P S, Wolff L B. Underwater partial polarization signatures from the Shallow water Real-time imaging polarimeter[C]// OCEANS '02 MTS/IEEE, 2002: 1526-1534. doi: 10.1109/OCEANS.2002.1191863.
[9] ZHAO Y, GONG P, PAN Q. Object detection by spectropolarimeteric imagery fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3337-3345. DOI: 10.1109/TGRS.2008.920467
[10] Duggin M J, Loe R S. Calibration and exploitation of a narrow-band imaging polarimeter[J]. Optical Engineering, 2002, 41(5): 1039-1047. DOI: 10.1117/1.1467935
[11] 曹汉军, 乔延利, 杨伟锋, 等. 偏振遥感图像特性表征及分析[J]. 量子电子学报, 2002, 19(4): 373-378. DOI: 10.3969/j.issn.1007-5461.2002.04.020 CAO Hanjun, QIAO Yanli, YANG Weifeng, et al. Characterization and analysis of the polarization images in remote sensing[J]. Chinese Journal of Quantum Electronics, 2002, 19(4): 373-348. DOI: 10.3969/j.issn.1007-5461.2002.04.020
[12] 杨之文, 高胜钢, 王培纲. 几种地物反射光的偏振特性[J]. 光学学报, 2005, 25(2): 241-245. DOI: 10.3321/j.issn:0253-2239.2005.02.022 YANG Zhiwen, GAO Shenggang, WANG Peigang. Polarization of reflected light by earth objects[J]. Acta Optica Sinica, 2005, 25(2): 241-245. DOI: 10.3321/j.issn:0253-2239.2005.02.022
[13] 杨伟锋, 洪津, 乔延利, 等. 无人机载偏振CCD相机光机系统设计[J]. 光学技术, 2008, 34(3): 469-473. DOI: 10.3321/j.issn:1002-1582.2008.03.023 YANG Weifeng, HONG Jin, QIAO Yanli, et al. Optical-mechanical system design of unmanned aerial vehicle polarization CCD camera[J]. Optical Technique, 2008, 34(3): 469-473. DOI: 10.3321/j.issn:1002-1582.2008.03.023
[14] 罗海波, 刘燕德, 兰乐佳, 等. 分焦平面偏振成像关键技术[J]. 华东交通大学学报, 2017, 34(1): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201701002.htm LUO Haibo, LIU Yande, LAN Lejia, et al. Key Technologies of polarization imaging for division of focal plane polarimeters[J]. Journal of East China Jiaotong University, 2017, 34(1): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201701002.htm
[15] Lavigne D A, Breton M, Fournier G, et al. A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands[C]//SPIE Defense, Security, & Sensing, 2009: 730010.
[16] Craven Jones J, Kudenov M W, Stapelbroek M G, et al. Preliminary results from an infrared hyperspectral imaging polarimeter[C]//Proceedings of SPIE, 2011, 8160: 81600T.
[17] 黄飞. 红外偏振探测关键技术研究[D]. 北京: 中国科学院大学, 2018. HUANG Fei. Research on key technologies of infrared polarization detection[D]. Beijing: University of Chinese Academy of Sciences, 2018.
[18] Laan J, Scrymgeour D A, Kemme S A, et al. Range and contrast imaging improvements using circularly polarized light in scattering environments[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2013, 8706(5): 87060R.
[19] Tyo J S, Turner T S. Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing[J]. Applied Optics, 2001, 40(9): 1450-1458. DOI: 10.1364/AO.40.001450
[20] Kim J, Escuti M J. Snapshot imaging spectropolarimeter utilizing polarization gratings[C]//SPIE Conference on Imaging Spectrometry, 2008, 7086: 708603.
[21] 贺虎成. 分孔径同时偏振成像光学系统的研究[D]. 苏州: 苏州大学, 2014. HE Hucheng. Research on split aperture simultaneous polarization imaging optical system[D]. Soochow: Soochow University, 2014.
[22] 陈星, 于淼, 曹亮, 等. 周期性微偏振片阵列特性研究[J]. 现代物理, 2019, 9(1): 23-31. CHEN Xin, YU Miao, CAO Liang, et al. Study on characteristics of periodic micropolarizer array[J]. Modern Physics, 2019, 9(1): 23-31.
[23] 张志刚, 董凤良, 程腾, 等. 基于像素偏振片阵列的实时动态相位测量技术[J]. 中国科学: 技术科学, 2015, 45(5): 491-497. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201505007.htm ZHANG Zhigang, DONG Fengliang, CHENG Teng, et al. Real-time dynamic phase measurement based on pixelated micropolarizer array[J]. Scientia Sinica Technologica, 2015, 45(5): 491-497. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201505007.htm
[24] LU B, WANG H, SHEN J, et al. A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure[J]. AIP Advances, 2016, 6(2): 25215. DOI: 10.1063/1.4942515
[25] Siefke T, Kley E, Tuennermann A, et al. Design and fabrication of titanium dioxide wire grid polarizer for the far ultraviolet spectral range[C]//Proceedings of SPIE, 2016: 992706.
[26] SHIN Y J, SHIN M J, GUO L J, et al. Fabrication of contact lens containing high-performance wire grid polarizer[J]. Polymer International, 2017, 66(9): 1269-1274. DOI: 10.1002/pi.5380
[27] 秦骁. 红外偏振光成像研究[D]. 长春: 长春理工大学, 2012. QIN Xiao. Research on infrared polarized light imaging[D]. Changchun: Changchun University of Science and Technology, 2012.
[28] 宋茂新. 航空多角度偏振辐射计的光机设计研究[D]. 北京: 中国科学院大学中国科学院研究生院, 2012. SONG Maoxin. Research on the opto-mechanical design of aviation multi-angle polarization radiometer[D]. Beijing: University of Chinese Academy of Sciences; Graduate School of Chinese Academy of Sciences, 2012.
[29] 李军伟, 陈伟力. 红外偏振成像技术与应用[M]. 北京: 科学出版社, 2017. LI Junwei, CHEN Weili. Infrared Polarization Imaging Technology and Application[M]. Beijing: Science Press, 2017: 60.
[30] Kawata Y, Yamazaki A, Kusaka T, et al. Aerosol retrieval from airborne Polder data by multiple scattering model[C]//International Geoscience & Remote Sensing Symposium. IEEE Xplore, 1994, 4: 1895-1897.
[31] 晏磊, 相云, 李宇波, 等. 偏振遥感研究进展[J]. 大气与环境光学学报, 2010, 5(3): 162-174. DOI: 10.3969/j.issn.1673-6141.2010.03.001 YAN Lei, XIANG Yun, LI Yubo, et al. Progress of polarization remote sensing research[J]. Journal of Atmospheric and Environmental Optics, 2010, 5(3): 162-174. DOI: 10.3969/j.issn.1673-6141.2010.03.001
[32] 张肇先, 王模昌. 探测云和大气气溶胶的专用仪器--卷云探测仪(模样)[C]//中国地球物理学会第13届年会, 1997: 207. ZHANG Zhaoxian, WANG Mochang. Cirrus Cloud Detector, a special instrument for detecting clouds and atmospheric aerosols (pattern)[C]//The 13th Annual Meeting of the Chinese Geophysical Society, 1997: 207.
[33] Williams J W, Tee H S, Poulter M A. Image processing and classification for the UK remote minefield detection system infrared polarimetric camera[J]. SPIE Defense + Commercial Sensing, 2001, 4394(1): 139-152. DOI: 10.1117/12.445466
[34] Jensen G L, Peterson J Q. Hyperspectral imaging polarimeter in the infrared[C]//Infrared Space borne Remote Sensing VI, 1998: 42-51.
[35] Nordin G P, Meier J T, Deguzman P C. Micropolarizer array for infrared imaging polarimetry[J]. Journal of the Optical Society of America, A. Optics, Image science, and Vision, 1999, 16(5): 1168-1174. DOI: 10.1364/JOSAA.16.001168
[36] Jones S H, Iannarilli F J, Kebabian P L. Realization of quantitative-grade fieldable snapshot imaging spectropolarimeter[J]. Optics Express, 2004, 12(26): 6559. DOI: 10.1364/OPEX.12.006559
[37] Miles B H, Goodson R A, Dereniak E L, et al. Computed-tomography imaging spectropolarimeter (CTISP): instrument concept, calibration and results[C]// Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 1999: 235-245.
[38] 邵卫东, 王培纲, 王桂平, 等. 分光偏振计技术研究[J]. 中国激光, 2003, 30(1): 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200301016.htm SHAO Weidong, WANG Peigang, WANG Guiping, et al. Study on Spectropolarimeter[J]. Chinese Journal of Lasers, 2003, 30(1): 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200301016.htm
[39] 陈立刚, 洪津, 乔延利, 等. 一种高精度偏振遥感探测方式的精度分析[J]. 光谱学与光谱分析, 2008, 28(10): 2384-2387. DOI: 10.3964/j.issn.1000-0593(2008)10-2384-04 CHEN Ligang, HONG Jin, QIAO Yanli, et al. Accuracy analysis on a sort of polarized measurement in remote sensing[J]. Spectroscopy and Spectral Analysis, 2008, 28(10): 2384-2387. DOI: 10.3964/j.issn.1000-0593(2008)10-2384-04
[40] 赵劲松. 偏振成像技术的进展[J]. 红外技术, 2013, 35(12): 743-750. http://hwjs.nvir.cn/article/id/hwjs201312001 ZHAO Jinsong. Developments of polarization imaging technology[J]. Infrared Technology, 2013, 35(12): 743-750. http://hwjs.nvir.cn/article/id/hwjs201312001
[41] 穆廷魁, 张淳民, 李祺伟, 等. 差分偏振干涉成像光谱仪I. 概念原理与操作[J]. 物理学报, 2014(11): 110701. DOI: 10.7498/aps.63.110701 MU Tingkui, ZHANG Chunmin, LI Qiwei, et al. The polarizationdifference interference imaging sp ectrometer-I. concept, principle, and operation[J]. Acta Physica Sinica, 2014(11): 110701. DOI: 10.7498/aps.63.110701
[42] 穆廷魁, 张淳民, 赵葆常. 偏振干涉成像光谱仪中Wollaston棱镜光程差及条纹定位面的精确计算与分析[J]. 物理学报, 2009, 58(6): 3877. DOI: 10.3321/j.issn:1000-3290.2009.06.043 MU Tingkui, ZHANG Chunmin, ZHAO Baochang. Calculation of the optical path difference and fringe location in polarization interference imaging spectrometer[J]. Acta Physica Sinica, 2009, 58(6): 3877. DOI: 10.3321/j.issn:1000-3290.2009.06.043
[43] 张海洋, 张军强, 杨斌, 等. 多线阵分焦平面型偏振遥感探测系统的标定[J]. 光学学报, 2016, 36(11): 311-318. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201611038.htm ZHANG Haiyang, ZHANG Junqiang, YANG Bin, et al. Calibration for Polarization Remote Sensing System with Focal Plane Divided by Multi-Linear Array[J]. Acta Optica Sinica, 2016, 36(11): 311-318. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201611038.htm
[44] 李照洲, 伽丽丽, 谢一凇, 等. GF-5卫星多角度偏振成像仪在轨偏振定标[J]. 大气与环境光学学报, 2019, 14(1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY201901003.htm LI Zhaozhou, JIA Lili, XIE Yisong, et al. In-Flight polarimetric calibration of directional polarization camera on GF-5 satellite[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY201901003.htm
[45] 俞罡. 新型椭圆偏振光谱仪MM-16[J]. 现代科学仪器, 2005(3): 85-88. DOI: 10.3969/j.issn.1003-8892.2005.03.031 YU Gang. New Ellipsometer MM-16[J]. Modern Scientific Instruments, 2005(3): 85-88. DOI: 10.3969/j.issn.1003-8892.2005.03.031
[46] GRANT L. Diffuse and specular characteristics of leaf reflectance[J]. Remote Sensing of Environment, 1987, 22(2): 309-322. DOI: 10.1016/0034-4257(87)90064-2
[47] 吴太夏. 偏振方向反射与二向性反射定量关系研究[D]. 长春: 东北师范大学, 2006. WU Taixia. Research on the quantitative relationship between polarization direction reflection and bidirectional reflection[D]. Changchun: Northeast Normal University, 2006.
[48] Woessner P, Hapke B. Polarization of light scattered by clover[J]. Remote Sensing of Environment, 1987, 21(3): 243-261. DOI: 10.1016/0034-4257(87)90011-3
[49] 韩阳. 长白山地区森林土壤含水量定量遥感研究——利用多角度偏振高光谱信息与MODIS影像数据[D]. 长春: 东北师范大学, 2010. HAN Yang. Research on quantitative remote sensing of forest soil water content in Changbai Mountain: Using Multi-angle Polarized Hyperspectral Information and MODIS Image Data[D]. Changchun: Northeast Normal University, 2010.
[50] 赵云升, 金伦, 张洪波, 等. 土壤的偏振反射特征研究[J]. 东北师大学报: 自然科学版, 2000, 32(4): 93-102. DOI: 10.3321/j.issn:1000-1832.2000.04.020 ZHAO Yunshen, JIN Lun, ZHANG Hongbo, et al. Study on the polarized reflectance characteristics of soil[J]. Journal of Northeast Normal University: Natural Science Edition, 2000, 32(4): 93-102. DOI: 10.3321/j.issn:1000-1832.2000.04.020
[51] Wolff L B. Polarization-based material classification from specular reflection[J]. IEEE Computer Society, 1990, 12(11): 1059-1071.
[52] Katkovsky L V, Belyaev B I, Belyaev Y V, et al. Spectropolarizational technique for detection of manmade objects in visible and near infrared spectral ranges[C]// IEEE International Geoscience & Remote Sensing Symposium, 1999, 2: 1381-1383.
[53] 都安平, 赵永强, 潘泉, 等. 基于偏振特征的图像增强算法[J]. 计算机测量与控制, 2007, 15(1): 106-108. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK200701037.htm DU Anping, ZHAO Yongqiang, PAN Quan, et al. Image enhancement algorithm based on polarization character[J]. Computer Measurement & Control, 2007, 15(1): 106-108. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK200701037.htm
[54] Egan W G, Duggin M J. Engineering, Optical enhancement of aircraft detection using polarization[C]//Polarization Analysis, Measurement, and Remote Sensing Ⅲ, 2000: 172-178.
[55] Egan W G, Duggin M J. Synthesis of optical polarization signatures of military aircraft[C]//Polarization Analysis, Measurement, and Remote Sensing IV, 2002: 188-194.
[56] Goldstein D H. Polarimetric characterization of federal standard paints[C]//Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 2000: 112-123.
[57] Tyo J S, Ratliff B M, Boger J K, et al. The effects of thermal equilibrium and contrast in LWIR polarimetric images[J]. Optics Express, 2007, 15(23): 15161-15167. DOI: 10.1364/OE.15.015161
[58] Gurton K, Felton M, Mack R, et al. MidIR and LWIR polarimetric sensor comparison study[C]//SPIE Conference on Detection and Sensing of Mines, Explosive Objects, and Obscured Targets, 2010: 76640L-76641L.
[59] 姜会林, 付强, 段锦, 等. 红外偏振成像探测技术及应用研究[J]. 红外技术, 2014, 36(5): 345-349. http://hwjs.nvir.cn/article/id/hwjs201405001 JIANG Huilin, FU Qiang, DUAN Jin, et al. Research on infrared polarization imaging detection technology and application[J]. Infrared Technology, 2014, 36(5): 345-349. http://hwjs.nvir.cn/article/id/hwjs201405001
[60] 孙晨. 偏振图像的伪彩色增强方法研究[D]. 长春: 长春理工大学, 2018. SUN Chen. Research on false color enhancement methods of polarized images[D]. Changchun: Changchun University of Science and Technology, 2018.
[61] Ratliff B M, Lemaster D A, Mack R T, et al. Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2011, 8160: 25-31.
[62] ZOU X, WANG X, JIN W, et al. Atmospheric effects on infrared polarization imaging system[J]. Infrared and Laser Engineering, 2012, 41(2): 304-308. http://spie.org/x648.html?product_id=929224
[63] 王慧斌, 廖艳, 沈洁, 等. 分级多尺度变换的水下偏振图像融合法[J]. 光子学报, 2014, 43(5): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201405033.htm WANG Huibin, LIAO Yan, SHEN Jie, et al. Method of Underwater Polarization Image Fusion Based on Hierarchical and multi-scale transform[J]. Acta Photonica Sinica, 2014, 43(5): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201405033.htm
[64] 刘珂, 李丽娟, 王军平. 红外偏振成像技术在空空导弹上的应用展望[J]. 航空兵器, 2016(4): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201604010.htm LIU Ke, LI Lijuan, WANG Junping. Application and prospect of infrared polarization imaging technology in air-to-air missile[J]. Aero Weaponry, 2016(4): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201604010.htm
[65] 王霞, 夏润秋, 金伟其, 等. 红外偏振成像探测技术进展[J]. 红外与激光工程, 2014(10): 3175-3182. DOI: 10.3969/j.issn.1007-2276.2014.10.001 WANG Xia, XIA Runqiu, JIN Weiqi, et al. Technology progress of infrared polarization imaging detection[J]. Infrared and Laser Engineering, 2014(10): 3175-3182. DOI: 10.3969/j.issn.1007-2276.2014.10.001
[66] 李广德, 刘东青, 王义, 等. 热红外伪装技术的研究现状与进展[J]. 红外技术, 2019, 41(6): 495-503. http://hwjs.nvir.cn/article/id/hwjs201906001 LI Guangde, LIU Dongqing, WANG Yi, et al. Research status and progress of the thermal infrared camouflage technology[J]. Infrared Technology, 2019, 41(6): 495-503. http://hwjs.nvir.cn/article/id/hwjs201906001
[67] 赵永强, 马位民, 李磊磊. 红外偏振成像进展[J]. 飞控与探测, 2019, 2(3): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-FKTC201903008.htm ZHAO Yongqiang, MA Weimin, LI Leilei. Progress of infrared polarimetric imaging detection[J]. Flight Control & Detection, 2019, 2(3): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-FKTC201903008.htm
[68] 王霞, 梁建安, 龙华宝, 等. 典型背景和目标的长波红外偏振成像实验研究[J]. 红外与激光工程, 2016, 45(7): 0704002-1-0704002-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201607004.htm WANG Xia, LIANG Jian'an, LONG Huabao, et al. Experimental study on long wave infrared polarization imaging of typical background and objectives[J]. Infrared and Laser Engineering, 2016, 45(7): 0704002-1- 0704002-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201607004.htm
[69] 李范鸣, 牛继勇, 马利祥. 基于红外偏振特性的空间目标探测可行性探讨[J]. 应用光学, 2013, 34(4): 653-657. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201304025.htm LI Fanming, NIU Jiyong, MA Lixiang. Feasibility analysis of space target detection based on infrared polarization properties[J]. Journal ofApplied Optics, 2013, 34(4): 653-657. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201304025.htm
[70] 陈伟力, 孙秋菊, 王淑华, 等. 目标表面发射率对红外辐射偏振特性的影响分析[J]. 光谱学与光谱分析, 2017, 37(3): 737-742. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201703018.htm CHEN Weili, SUN Qiuju, WANG Shuhua, et al. Influence analysis of target surface emissivity on infrared radiation polarization characteristics[J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 737-742. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201703018.htm
[71] Sokolov K, Drezek R, Gossage K, et al. Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology[J]. Optics Express, 1999, 5(13): 302-317. DOI: 10.1364/OE.5.000302
[72] Demos S G, Alfano R R. Optical polarization imaging[J]. Applied Optics, 1997, 36(1/3): 150-155.
[73] Demos S G, Radousky H B, Alfano R R. Subsurface imaging using the spectral polarization difference technique and NIR illumination[C]// Optical Tomography and Spectroscopy of Tissue Ⅲ. 1999: 406-410.
[74] ZHAO Y, ZHANG L, PAN Q. Spectropolarimetric imaging for pathological analysis of skin[J]. Applied Optics, 2009, 48(10): D236-46. DOI: 10.1364/AO.48.00D236
[75] Frost J W, Nasr Ad Dine F, Rodriguez J, et al. A handheld polarimeter for aerosol remote sensing[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2005: 269-276.
-
期刊类型引用(1)
1. 单幼芳. 基于深度学习算法的太赫兹人体安检图像处理技术研究. 电脑编程技巧与维护. 2024(07): 127-129 . 百度学术
其他类型引用(1)