基于SP-HVS的无人机高光谱影像拼接优化

Optimization of UAV Hyperspectral Image Stitching Based on SP-HVS

  • 摘要: 由于可见光或者单波段图像拼接主要用于视觉效果和测图,无人机高光谱影像的拼接还有更高的要求,需要利用到拼接后的光谱信息。针对无人机高光谱影像拼接自身独特的问题,提出了一种基于形状保持与人眼视觉(SP-HVS)的无人机高光谱影像拼接优化方法,旨在得到研究区完整的高光谱数据立方体。通过对农田、河流与森林区域的无人机高光谱影像的实验表明,所提算法的拼接结果更符合人眼的视觉特征;通过对获得的高光谱数据立方体计算光谱角填图和光谱相关性,所提算法在拼接线上采样点的光谱保真度达到99.2%。研究为无人机高光谱影像的高精度拼接提供了新思路,具有较高的实用价值。

     

    Abstract: Since visible light or single-band image stitching is mainly used for visual effects and mapping, the stitching of unmanned aerial vehicle(UAV) hyperspectral images has higher requirements, and the spectral information after stitching needs to be used. In order to solve the unique problem of UAV hyperspectral image stitching, a UAV hyperspectral image stitching optimization method based on Shape Preservation and Human Vision (SP-HVS) was proposed, aiming to obtain a complete hyperspectral data cube in the study area. Through the experiments of UAV hyperspectral images in farmland, rivers and forest areas, the results of the proposed algorithm are more in line with the visual characteristics of the human eye. By calculating the spectral angle filling and spectral correlation of the obtained hyperspectral data cube, the spectral fidelity of the proposed algorithm at the sampling points on the splicing line reaches 99.2%. This research provides a novel approach for high-precision UAV hyperspectral image stitching, offering significant practical value.

     

/

返回文章
返回