Compensation Algorithm to Improve the Influence of Ambient Light on the Infrared Temperature Measurement Accuracy of a Strong Reflector Surface
-
摘要: 针对铝业加工中的轧辊表面光滑,具有强反光特性,红外测温传感器测温易受环境光照影响,致使轧辊表面测温精度低,影响冷却控制系统对轧辊表面降温处理精度,进而造成产品质量差的现象,本文提出并构建了一种基于光照强度的红外测量温度补偿算法,以提高环境光照对强反光体表面温度测量的精度。实验结果证明本方法能较好地弥补光照强度变化对红外温度测量产生的测量误差,提高了测量精度。该补偿算法运算简单、适应性强,为改善光照强度变化对测量精度的影响提供了新的方法。Abstract: A roll surface in aluminum processing is smooth, has strong reflective characteristics, and is easily affected by ambient light when using an infrared temperature sensor to measure the temperature, resulting in low temperature measurement accuracy on the roll surface. The cooling control system affects the precision of cooling treatment on the roll surface, resulting in poor product quality. In this study, an infrared temperature compensation algorithm based on light intensity is proposed and constructed to improve the accuracy of ambient light measurement of the surface temperature of a strong reflector. Experimental results show that this method can compensate for measurement errors caused by changes in illumination intensity, thereby improving the measurement accuracy. The algorithm is simple and adaptable and provides a new approach to strengthening the accuracy of temperature measurement given speed change.
-
-
-
[1] Lucchi Elena. Applications of the infrared thermography in the energy audit of buildings: a review[J]. Renewable & Sustainable Energy Reviews, 2018, 82: 3077-3090. http://www.sciencedirect.com/science/article/pii/S1364032117314119
[2] Manara J, Zipf M, Stark T, et al. Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines[J]. Infrared Physics, and Technology, 2017, 80: 120 -130. DOI: 10.1016/j.infrared.2016.11.014
[3] ZHANG C, Gauthier E, Pocheau C, et al. Surface temperature measurement of the plasma facing components with the multi-spectral infrared thermography diagnostics in tokamaks[J]. Infrared Physics and Technology, 2017, 81: 215-222. DOI: 10.1016/j.infrared.2017.01.011
[4] Atas Berksoy, Bag Ozlem, Yazici Selcuk, et al. Use of noncontact thermography to measure temperature in children in a triage room[J]. Medicine, 2018, 97(5): e9737. DOI: 10.1097/MD.0000000000009737
[5] Rubén Usamentiaga, Daniel Fernando García. Infrared thermography sensor for temperature and speed measurement of moving material[J]. Sensors, 2017, 17: 2-21. DOI: 10.1109/JSEN.2017.2761500
[6] SONG B Q, XIN Y E, YANG D J, et al. Precise measurement of voltages in space cryogenic radiation temperature system[J]. Optics & Precision Engineering, 2015, 23(7): 1903-1910. http://www.researchgate.net/publication/285214954_Precise_measurement_of_voltages_in_space_cryogenic_radiation_temperature_system
[7] Masoudi S, Gholami M A, Janghorban Iariche M, et al. Infrared temperature measurement and increasing infrared measurement accuracy in the context of machining process[J]. Advances in Production Engineering & Management, 2017, 12(4): 353-362. http://www.researchgate.net/publication/321882852_Infrared_temperature_measurement_and_increasing_infrared_measurement_accuracy_in_the_context_of_machining_process
[8] SONG B Q, XIN Y E, YANG D J, et al. Precise measurement of voltages in space cryogenic radiation temperature system[J]. Optics & Precision Engineering, 2015, 23(7): 1903-1910. http://www.researchgate.net/publication/285214954_Precise_measurement_of_voltages_in_space_cryogenic_radiation_temperature_system
[9] 陈文亮, 胡毓国, 李杏华, 等.回转体测量机温度误差分析及补偿[J]. 纳米技术与精密工程, 2015, 13(1): 22-27. http://www.cnki.com.cn/Article/CJFDTotal-NMJM201501004.htm CHEN Wenliang, HU Yuguo, LI Xinghua, et al. Analysis and compensation of temperature error of rotary measuring machine[J]. Nanotechnology and Precision Engineering, 2015, 13(1): 22-27. http://www.cnki.com.cn/Article/CJFDTotal-NMJM201501004.htm
[10] 孟凡伟, 高悦, 马翠红, 等.基于热辐射理论的熔融金属红外测温模型研究[J]. 红外技术, 2017, 39(8): 766-771. http://hwjs.nvir.cn/article/id/hwjs201708017 MENG Fanwei, GAO Yue, MA Cuihong, et al. Infrared temperature measurement model for molten metal based on thermal radiation theory[J]. Infrared Technology, 2017, 39(8): 766-771. http://hwjs.nvir.cn/article/id/hwjs201708017
[11] 廖盼盼, 张佳民.红外测温精度的影响因素及补偿方法的研究[J]. 红外技术, 2017, 39(2): 173-177. http://hwjs.nvir.cn/article/id/hwjs201702012 LIAO Panpan, ZHANG Jiamin. Research on influence factors for measuring and method of correction in infrared thermometer[J]. Infrared Technology, 2017, 39(2): 173-177. http://hwjs.nvir.cn/article/id/hwjs201702012
[12] 石东平, 吴超, 李孜军, 等.基于反射温度补偿及入射温度补偿的红外测温影响分析[J]. 红外与激光工程, 2015, 44(8): 2321-2326. DOI: 10.3969/j.issn.1007-2276.2015.08.015 SHI Dongping, WU Chao, LI Zijun, et al. Influence analysis of infrared temperature measurement based on reflection temperature compensation and incident temperature compensation[J]. Infrared and Laser Engineering, 2015, 44(8): 2321-2326. DOI: 10.3969/j.issn.1007-2276.2015.08.015
[13] 田昌会, 杨百愚, 蔡明, 等.大气背景对红外目标探测的影响[J]. 红外与激光工程, 2014, 43(2): 439-441. http://d.wanfangdata.com.cn/Periodical/hwyjggc201402018 TIAN Changhui, YANG Baiyu, CAI Ming, et al. Influence of atmospheric background on infrared target detection[J]. Infrared and Laser Engineering, 2014, 43(2): 439-441. http://d.wanfangdata.com.cn/Periodical/hwyjggc201402018
[14] 刘纯红, 吴海滨, 熊丹枫, 等.热辐射测温系统中探测器非线性校正方法[J]. 量子电子学报, 2017, 349(2): 227-230. http://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201702014.htm LIU Chunhong, WU Haibin, XIONG Danfeng, et al. Nonlinear calibration method of detector in thermal radiation temperature measurement system[J]. Chinese Journal of Quantum Electronics, 2017, 349(2): 227-230. http://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201702014.htm