改善环境光照对强反光体表面红外测温精度影响的补偿算法研究

魏绍亮, 韩连伟, 程奉玉

魏绍亮, 韩连伟, 程奉玉. 改善环境光照对强反光体表面红外测温精度影响的补偿算法研究[J]. 红外技术, 2020, 42(12): 1179-1184.
引用本文: 魏绍亮, 韩连伟, 程奉玉. 改善环境光照对强反光体表面红外测温精度影响的补偿算法研究[J]. 红外技术, 2020, 42(12): 1179-1184.
WEI Shaoliang, HAN Lianwei, CHENG Fengyu. Compensation Algorithm to Improve the Influence of Ambient Light on the Infrared Temperature Measurement Accuracy of a Strong Reflector Surface[J]. Infrared Technology , 2020, 42(12): 1179-1184.
Citation: WEI Shaoliang, HAN Lianwei, CHENG Fengyu. Compensation Algorithm to Improve the Influence of Ambient Light on the Infrared Temperature Measurement Accuracy of a Strong Reflector Surface[J]. Infrared Technology , 2020, 42(12): 1179-1184.

改善环境光照对强反光体表面红外测温精度影响的补偿算法研究

基金项目: 

河南理工大学博士基金 B2016-29

详细信息
    作者简介:

    魏绍亮(1969-),男,博士,教授。主要研究方向:机电测试与控制、智能仪表设计、信号传输与处理。E-mail:wsl_ify@163.com

  • 中图分类号: TH701

Compensation Algorithm to Improve the Influence of Ambient Light on the Infrared Temperature Measurement Accuracy of a Strong Reflector Surface

  • 摘要: 针对铝业加工中的轧辊表面光滑,具有强反光特性,红外测温传感器测温易受环境光照影响,致使轧辊表面测温精度低,影响冷却控制系统对轧辊表面降温处理精度,进而造成产品质量差的现象,本文提出并构建了一种基于光照强度的红外测量温度补偿算法,以提高环境光照对强反光体表面温度测量的精度。实验结果证明本方法能较好地弥补光照强度变化对红外温度测量产生的测量误差,提高了测量精度。该补偿算法运算简单、适应性强,为改善光照强度变化对测量精度的影响提供了新的方法。
    Abstract: A roll surface in aluminum processing is smooth, has strong reflective characteristics, and is easily affected by ambient light when using an infrared temperature sensor to measure the temperature, resulting in low temperature measurement accuracy on the roll surface. The cooling control system affects the precision of cooling treatment on the roll surface, resulting in poor product quality. In this study, an infrared temperature compensation algorithm based on light intensity is proposed and constructed to improve the accuracy of ambient light measurement of the surface temperature of a strong reflector. Experimental results show that this method can compensate for measurement errors caused by changes in illumination intensity, thereby improving the measurement accuracy. The algorithm is simple and adaptable and provides a new approach to strengthening the accuracy of temperature measurement given speed change.
  • 图  1   实验测试环境

    Figure  1.   Experimental test environment

    图  2   光照强度为2 lx时的红外测温结果

    Figure  2.   Infrared temperature measurement results with light intensity of 2 lx

    图  3   不同温度下不同光照强度时的测量结果与误差

    Figure  3.   Measurement results and errors of different light intensity at different temperature

    图  4   不同光照强度条件下实际温度与测量温度比较

    Figure  4.   Comparison between the actual temperature and the measured temperature under different light measurement

    图  5   不同光照强度下测量温度的绝对误差

    Figure  5.   Absolute error of temperature under different light intensity intensity conditions

    图  6   补偿系数与光照强度的关系图

    Figure  6.   Diagram of compensation coefficient and illumination intensity

    图  7   补偿算法修正后的温度分布曲线

    Figure  7.   The temperature distribution curve corrected by the compensation algorithm

  • [1]

    Lucchi Elena. Applications of the infrared thermography in the energy audit of buildings: a review[J]. Renewable & Sustainable Energy Reviews, 2018, 82: 3077-3090. http://www.sciencedirect.com/science/article/pii/S1364032117314119

    [2]

    Manara J, Zipf M, Stark T, et al. Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines[J]. Infrared Physics, and Technology, 2017, 80: 120 -130. DOI: 10.1016/j.infrared.2016.11.014

    [3]

    ZHANG C, Gauthier E, Pocheau C, et al. Surface temperature measurement of the plasma facing components with the multi-spectral infrared thermography diagnostics in tokamaks[J]. Infrared Physics and Technology, 2017, 81: 215-222. DOI: 10.1016/j.infrared.2017.01.011

    [4]

    Atas Berksoy, Bag Ozlem, Yazici Selcuk, et al. Use of noncontact thermography to measure temperature in children in a triage room[J]. Medicine, 2018, 97(5): e9737. DOI: 10.1097/MD.0000000000009737

    [5]

    Rubén Usamentiaga, Daniel Fernando García. Infrared thermography sensor for temperature and speed measurement of moving material[J]. Sensors, 2017, 17: 2-21. DOI: 10.1109/JSEN.2017.2761500

    [6]

    SONG B Q, XIN Y E, YANG D J, et al. Precise measurement of voltages in space cryogenic radiation temperature system[J]. Optics & Precision Engineering, 2015, 23(7): 1903-1910. http://www.researchgate.net/publication/285214954_Precise_measurement_of_voltages_in_space_cryogenic_radiation_temperature_system

    [7]

    Masoudi S, Gholami M A, Janghorban Iariche M, et al. Infrared temperature measurement and increasing infrared measurement accuracy in the context of machining process[J]. Advances in Production Engineering & Management, 2017, 12(4): 353-362. http://www.researchgate.net/publication/321882852_Infrared_temperature_measurement_and_increasing_infrared_measurement_accuracy_in_the_context_of_machining_process

    [8]

    SONG B Q, XIN Y E, YANG D J, et al. Precise measurement of voltages in space cryogenic radiation temperature system[J]. Optics & Precision Engineering, 2015, 23(7): 1903-1910. http://www.researchgate.net/publication/285214954_Precise_measurement_of_voltages_in_space_cryogenic_radiation_temperature_system

    [9] 陈文亮, 胡毓国, 李杏华, 等.回转体测量机温度误差分析及补偿[J]. 纳米技术与精密工程, 2015, 13(1): 22-27. http://www.cnki.com.cn/Article/CJFDTotal-NMJM201501004.htm

    CHEN Wenliang, HU Yuguo, LI Xinghua, et al. Analysis and compensation of temperature error of rotary measuring machine[J]. Nanotechnology and Precision Engineering, 2015, 13(1): 22-27. http://www.cnki.com.cn/Article/CJFDTotal-NMJM201501004.htm

    [10] 孟凡伟, 高悦, 马翠红, 等.基于热辐射理论的熔融金属红外测温模型研究[J]. 红外技术, 2017, 39(8): 766-771. http://hwjs.nvir.cn/article/id/hwjs201708017

    MENG Fanwei, GAO Yue, MA Cuihong, et al. Infrared temperature measurement model for molten metal based on thermal radiation theory[J]. Infrared Technology, 2017, 39(8): 766-771. http://hwjs.nvir.cn/article/id/hwjs201708017

    [11] 廖盼盼, 张佳民.红外测温精度的影响因素及补偿方法的研究[J]. 红外技术, 2017, 39(2): 173-177. http://hwjs.nvir.cn/article/id/hwjs201702012

    LIAO Panpan, ZHANG Jiamin. Research on influence factors for measuring and method of correction in infrared thermometer[J]. Infrared Technology, 2017, 39(2): 173-177. http://hwjs.nvir.cn/article/id/hwjs201702012

    [12] 石东平, 吴超, 李孜军, 等.基于反射温度补偿及入射温度补偿的红外测温影响分析[J]. 红外与激光工程, 2015, 44(8): 2321-2326. DOI: 10.3969/j.issn.1007-2276.2015.08.015

    SHI Dongping, WU Chao, LI Zijun, et al. Influence analysis of infrared temperature measurement based on reflection temperature compensation and incident temperature compensation[J]. Infrared and Laser Engineering, 2015, 44(8): 2321-2326. DOI: 10.3969/j.issn.1007-2276.2015.08.015

    [13] 田昌会, 杨百愚, 蔡明, 等.大气背景对红外目标探测的影响[J]. 红外与激光工程, 2014, 43(2): 439-441. http://d.wanfangdata.com.cn/Periodical/hwyjggc201402018

    TIAN Changhui, YANG Baiyu, CAI Ming, et al. Influence of atmospheric background on infrared target detection[J]. Infrared and Laser Engineering, 2014, 43(2): 439-441. http://d.wanfangdata.com.cn/Periodical/hwyjggc201402018

    [14] 刘纯红, 吴海滨, 熊丹枫, 等.热辐射测温系统中探测器非线性校正方法[J]. 量子电子学报, 2017, 349(2): 227-230. http://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201702014.htm

    LIU Chunhong, WU Haibin, XIONG Danfeng, et al. Nonlinear calibration method of detector in thermal radiation temperature measurement system[J]. Chinese Journal of Quantum Electronics, 2017, 349(2): 227-230. http://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201702014.htm

图(7)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-19
  • 修回日期:  2020-03-16
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回