基于支持向量机的长波红外目标分类识别算法

Classification and Recognition Algorithm for Long-wave Infrared Targets Based on Support Vector Machine

  • 摘要: 红外图像的分辨率低和色彩单一,但由于红外设备的全天候工作特点,因而在某些场景具有重要作用。本文采用一种基于支持向量机(support vector machine, SVM)的长波红外目标图像分类识别的算法,在一幅图像中,将算法提取的边缘特征和纹理特征作为目标的识别特征,输入到支持向量机,最后输出目标的类别。在实验中,设计方向梯度直方图+灰度共生矩阵+支持向量机的组合算法模型,采集8种人物目标场景图像进行训练和测试,实验结果显示:相同或者不相同人物目标,穿着不同服饰,算法模型的分类识别正确率较高。因此,在安防监控、工业检测、军事目标识别等运用领域,此组合算法模型可以满足需要,在红外目标识别领域具有一定的优越性。

     

    Abstract: Infrared images have a low resolution and a single color, but they play an important role in some scenes because they can be used under all weather conditions. This study adopts a support vector machine algorithm for long-wave infrared target image classification and recognition. The algorithm extracts edge and texture features, which are used as the recognition features of the target, and forwards them to a support vector machine. Then, the target category is output for infrared target recognition. Several models, such as the histogram of oriented gradient, gray level co-occurrence matrix, and support vector machine, are combined to collect images of eight types of target scenes for training and testing. The experimental results show that the algorithm can classify the same target person wearing different clothes with high accuracy and that it has a good classification effect on different target characters. Therefore, under certain scene conditions, this combined algorithm model can meet the needs and has certain advantages in the field of target recognition.

     

/

返回文章
返回