基于改进SSD的人群异常行为检测算法研究

亢洁, 田野, 杨刚

亢洁, 田野, 杨刚. 基于改进SSD的人群异常行为检测算法研究[J]. 红外技术, 2022, 44(12): 1316-1323.
引用本文: 亢洁, 田野, 杨刚. 基于改进SSD的人群异常行为检测算法研究[J]. 红外技术, 2022, 44(12): 1316-1323.
KANG Jie, TIAN Ye, YANG Gang. Research on Crowd Abnormal Behavior Detection Based on Improved SSD[J]. Infrared Technology , 2022, 44(12): 1316-1323.
Citation: KANG Jie, TIAN Ye, YANG Gang. Research on Crowd Abnormal Behavior Detection Based on Improved SSD[J]. Infrared Technology , 2022, 44(12): 1316-1323.

基于改进SSD的人群异常行为检测算法研究

基金项目: 

陕西省重点研发计划项目 2021GY-022

详细信息
    作者简介:

    亢洁(1973-),女,博士,副教授,主要研究方向:模式识别、机器视觉、智能控制。E-mail: kangjie@sust.edu.cn

  • 中图分类号: TP391

Research on Crowd Abnormal Behavior Detection Based on Improved SSD

  • 摘要: 针对人群异常行为检测任务中存在的算法复杂度较高,重叠遮挡等带来的检测精度低等问题,本文提出一种基于改进SSD(Single Shot Multi-box Detector)的人群异常行为检测算法。首先采用轻量级网络MobileNet v2代替原始特征提取网络VGG-16,并通过可变形卷积模块构建卷积层来增强感受野,然后通过将位置信息整合到通道注意力中来进行特征增强,能够捕获空间位置之间的远程依赖关系,从而可以较好处理重叠遮挡问题。实验结果表明,本文提出的算法对人群异常行为具有较好的检测效果。
    Abstract: Aiming at the problems of high algorithmic complexity and low detection accuracy caused by overlapping occlusions in abnormal crowd behavior detection, this paper proposes an algorithm for crowd abnormal behavior detection based on an improved single-shot multi-box detector(SSD). First, the lightweight network MobileNet v2 was used to replace the original feature extraction network VGG-16, and a convolutional layer was constructed by a deformable convolution module to enhance the receptive field. Feature enhancement was performed by integrating the position information into the channel attention, which can capture long-range dependencies between spatial locations, allowing for better handling of overlapping occlusions. The experimental results show that the proposed algorithm has a good detection effect on abnormal crowd behavior.
  • 图  1   基于改进SSD的人群异常行为检测模型

    Figure  1.   Crowd abnormal behavior detection model based on improved SSD

    图  2   MobileNet v2网络模块

    Figure  2.   MobileNet v2 network module

    图  3   可变形卷积模块

    Figure  3.   Deformable convolution module

    图  4   坐标注意力模块

    Figure  4.   Coordinate attention module

    图  5   特征增强结构

    Figure  5.   Feature enhancement structure diagram

    图  6   LabelImg工作界面

    Figure  6.   LabelImg working interface

    图  7   本文模型在Ped1上的训练损失曲线

    Figure  7.   The training loss curve of the model in this paper on Ped1

    图  8   本文模型在Ped2上的训练损失曲线

    Figure  8.   The training loss curve of the model in this paper on Ped2

    图  9   可视化结果

    Figure  9.   Visualization results

    表  1   基于改进SSD的消融实验

    Table  1   Ablation experiment based on improved SSD

    Methods Ped1 Ped2
    Test speed /fps AUC/% Test speed /fps AUC/%
    VGG-16 21.96 61.98 20.36 63.81
    MobileNet v2 27.92 65.26 27.02 70.25
    MobileNet v2+Deformable Conv 26.68 69.81 25.73 77.98
    MobileNet v2+Deformable Conv+CA 26.59 74.50 25.41 88.93
    下载: 导出CSV

    表  2   不同检测模型性能对比分析

    Table  2   Comparative analysis of the performance of different detection models

    Methods Ped1 Ped2
    Test speed/fps AUC/% Test speed/fps AUC/%
    SSD 21.96 61.98 20.36 63.81
    Social Force[12] 23.36 67.50 23.18 70.00
    Pang et al.[13] 25.21 71.7 24.85 83.2
    Ours 26.59 74.50 25.41 88.93
    下载: 导出CSV
  • [1]

    HU Y. Design and implementation of abnormal behavior detection based on deep intelligent analysis algorithms in massive video surveillance[J]. Journal of Grid Computing, 2020, 18(2): 227-237. DOI: 10.1007/s10723-020-09506-2

    [2] 张欣, 齐华. 基于YOLOv4的人体异常行为检测算法研究[J]. 计算机与数字工程, 2021, 49(4): 791-796. DOI: 10.3969/j.issn.1672-9722.2021.04.034

    ZHANG X, QI H. Research on human abnormal behavior detection algorithm based on YOLOv4[J]. Computer and Digital Engineering, 2021, 49(4): 791-796. DOI: 10.3969/j.issn.1672-9722.2021.04.034

    [3] 胡学敏, 陈钦, 杨丽. 基于深度时空卷积神经网络的人群异常行为检测和定位[J]. 计算机应用研究, 2020, 37(3): 891-895. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202003057.htm

    HU X M, CHEN Q, YANG L. Detection and localization of abnormal crowd behavior based on deep spatiotemporal convolutional neural network[J]. Application Research of Computers, 2020, 37(3): 891-895. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202003057.htm

    [4]

    Almazroey A A, Jarraya S K. Abnormal events and behavior detection in crowd scenes based on deep learning and neighborhood component analysis feature selection[C]//Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020), 2020: 258-267.

    [5]

    MU Y L, ZHANG B. Abnormal event detection and localization in visual surveillance[C] //Communications, Signal Processing, and Systems, 2020: 1217-1225.

    [6]

    LIU W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//Proceedings of European Conference on Computer Vision, 2016: 21-37.

    [7]

    HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C] //2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021: 13708-13717.

    [8]

    Ali K, MOHAMMAD S M. Improved anomaly detection in surveillance videos based on a deep learning method[C]// 8th Conference of AI & Robotics and 10th RoboCup Iranopen International Symposium, 2018: 73-81.

    [9]

    Sandler M, Howard A, Zhu M, et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.

    [10]

    DAI J F, QI H Z, XIONG Y W, et al. Deformable Convolutional Networks[C]//2017 IEEE International Conference on Computer Vision (ICCV), 2017: 764-773.

    [11]

    Mahadevan V, LI W, Bhalodia V, et al. Anomaly detection in crowded scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2010: 1975-1981.

    [12]

    WU W H, CHEN M Y, LI J H, et al. Visual information based social force model for crowd evacuation[J]. Tsinghua Science and Technology, 2022, 27(3): 619-629. DOI: 10.26599/TST.2021.9010023

    [13]

    PANG G S, YAN C, SHEN C H, et al. Self-trained deep ordinal regression for end-to-end video anomaly detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 12170-12179.

图(9)  /  表(2)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  32
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-07-11
  • 刊出日期:  2022-12-19

目录

    /

    返回文章
    返回