节流孔孔径对记忆合金自调式制冷器流量稳定性的影响

Effect of Orifice Size on Flow Stability of Shape Memory Alloy Self-Regulated Cryocoolers

  • 摘要: 本文通过理论计算和实验研究对不同节流孔孔径的记忆合金自调式制冷器流量稳定性进行了分析。理论计算表明:当制冷器受到相同扰动因素影响时,节流孔孔径越小的制冷器,流量越稳定;流量变化量随节流孔孔径增大呈线性增长趋势。实验研究中,制作了孔径分别为0.15 mm和0.25 mm的记忆合金自调式制冷器,将疲劳测试和振动测试作为扰动因素,对制冷器在29 MPa和22 MPa的流量进行测试,结果显示,孔径为0.15 mm的制冷器流量方差明显小于0.25 mm的制冷器。理论和实验研究均表明,缩小节流孔孔径的设计有助于提高记忆合金自调式制冷器的流量稳定性。

     

    Abstract: The flow stability of shape memory alloy (SMA) self-regulated cryocoolers with different orifice sizes is analyzed via theoretical calculation and experimental study. The theoretical calculation demonstrates that the smaller the orifice diameter, the more stable is the flow rate when the cryocoolers are influenced by the same disturbance factors. The change in flow rate increases linearly with the increase in orifice diameter. In the experimental investigation, two types of SMA self-regulated cryocoolers, equipped with 0.15 mm and 0.25 mm orifices, respectively, were developed. Fatigue and vibration tests were introduced as disturbance factors. The flow rates of cryocoolers were evaluated at 29 and 22 MPa. The results show that the cryocoolers with a 0.15 mm orifice have smaller flow rate variance than those with a 0.25 mm orifice. Both the theoretical and experimental results verified that narrowing the diameter of the orifice is conducive to the flow stability of SMA self-regulated cryocoolers.

     

/

返回文章
返回