Effect of Orifice Size on Flow Stability of Shape Memory Alloy Self-Regulated Cryocoolers
-
摘要: 本文通过理论计算和实验研究对不同节流孔孔径的记忆合金自调式制冷器流量稳定性进行了分析。理论计算表明:当制冷器受到相同扰动因素影响时,节流孔孔径越小的制冷器,流量越稳定;流量变化量随节流孔孔径增大呈线性增长趋势。实验研究中,制作了孔径分别为0.15 mm和0.25 mm的记忆合金自调式制冷器,将疲劳测试和振动测试作为扰动因素,对制冷器在29 MPa和22 MPa的流量进行测试,结果显示,孔径为0.15 mm的制冷器流量方差明显小于0.25 mm的制冷器。理论和实验研究均表明,缩小节流孔孔径的设计有助于提高记忆合金自调式制冷器的流量稳定性。Abstract: The flow stability of shape memory alloy (SMA) self-regulated cryocoolers with different orifice sizes is analyzed via theoretical calculation and experimental study. The theoretical calculation demonstrates that the smaller the orifice diameter, the more stable is the flow rate when the cryocoolers are influenced by the same disturbance factors. The change in flow rate increases linearly with the increase in orifice diameter. In the experimental investigation, two types of SMA self-regulated cryocoolers, equipped with 0.15 mm and 0.25 mm orifices, respectively, were developed. Fatigue and vibration tests were introduced as disturbance factors. The flow rates of cryocoolers were evaluated at 29 and 22 MPa. The results show that the cryocoolers with a 0.15 mm orifice have smaller flow rate variance than those with a 0.25 mm orifice. Both the theoretical and experimental results verified that narrowing the diameter of the orifice is conducive to the flow stability of SMA self-regulated cryocoolers.
-
Keywords:
- cryocoolers /
- shape memory alloy (SMA) /
- orifice /
- flow rate /
- stability
-
-
表 1 节流孔孔径对流量稳定性影响算例
Table 1 Example of the influence of orifice diameter on flow stability
Orifice diameter/mm Setup flow rate/(g/min) Distance of needle into orifice at setup flow rate/mm Distance of needle into orifice after disturbance/mm Flow rate after disturbance/(g/min) Flow rate variation/(g/min) 0.10 14.61 0.1634 0.1534 21.07 6.46 0.11 14.61 0.1840 0.1740 21.80 7.19 0.12 14.61 0.2042 0.1942 22.52 7.91 0.13 14.61 0.2242 0.2142 23.23 8.62 0.14 14.61 0.2439 0.2339 23.94 9.33 0.15 14.61 0.2635 0.2535 24.65 10.04 0.16 14.61 0.2829 0.2729 25.35 10.74 0.17 14.61 0.3022 0.2922 26.05 11.44 0.18 14.61 0.3214 0.3114 26.74 12.13 0.19 14.61 0.3406 0.3306 27.44 12.83 0.20 14.61 0.3597 0.3497 28.14 13.53 0.21 14.61 0.3787 0.3687 28.83 14.22 0.22 14.61 0.3977 0.3877 29.52 14.91 0.23 14.61 0.4166 0.4066 30.22 15.61 0.24 14.61 0.4356 0.4256 30.91 16.30 0.25 14.61 0.4544 0.4444 31.60 16.99 表 2 调试流量对流量稳定性影响算例
Table 2 Example of the influence of adjusting flow rate on flow stability
Orifice diameter/mm Setup flow rate/(g/min) Distance of needle into orifice at setup flow rate/mm Distance of needle into orifice after disturbance/mm Flow rate after disturbance/(g/min) Flow rate variation/(g/min) 0.15 14.61 0.2635 0.2535 24.65 10.04 0.15 15.62 0.2625 0.2525 25.64 10.02 0.15 16.63 0.2615 0.2515 26.63 10.00 0.15 17.64 0.2605 0.2505 27.63 9.99 0.15 18.64 0.2595 0.2495 28.62 9.97 0.15 19.65 0.2585 0.2485 29.60 9.96 0.15 20.65 0.2575 0.2475 30.59 9.94 0.15 21.65 0.2565 0.2465 31.58 9.93 0.15 22.65 0.2555 0.2455 32.56 9.91 0.15 23.65 0.2545 0.2445 33.54 9.89 表 3 0.15 mm节流孔制冷器流量数据
Table 3 Flow rate data of cryocoolers with 0.15 mm orifice
Cryocooler number Setup flow rate/(g/min) Flow rate after fatigue test/(g/min) Flow rate after vibration test /(g/min) 29 MPa 22 MPa 29 MPa 22 MPa 29 MPa 22 MPa A1 17.35 14.16 15.61 11.4 16.75 15.07 A2 16.47 12.32 16.9 14.3 15.73 14.57 A3 16.5 13.25 16.18 14.6 15.89 13.87 A4 16.15 12.38 14.32 11.83 11.92 8.13 A5 16.45 13.66 17.17 15.7 18.04 15.1 A6 15.16 11.85 16.45 13.95 16.19 13.56 A7 15.84 13.35 15.04 13.11 16.07 12.9 A8 16.67 12.36 18.07 14.75 17.99 14.05 A9 15.44 13.68 15.19 13.01 16.06 15.34 表 4 0.25 mm节流孔制冷器流量数据
Table 4 Flow rate data of cryocoolers with 0.25 mm orifice
Cryocooler number Setup flow rate/(g/min) Flow rate after fatigue test/(g/min) Flow rate after vibration test /(g/min) 29 MPa 22 MPa 29 MPa 22 MPa 29 MPa 22 MPa B1 16.63 12.33 15.1 12.1 17.13 13.56 B2 15.28 12.97 15.9 10.54 15.84 9.89 B3 17.8 14.43 17.91 11.07 18.33 12.32 B4 15.35 11.67 16.4 13.34 16.17 13.57 B5 16.92 15.3 14.31 11.61 21.42 18.87 B6 16.32 14.6 17.2 13.41 21.13 17.23 B7 17.87 15.33 16.66 14.12 16.42 13.89 B8 15.19 13.3 19.4 17.4 12.41 5.77 B9 16.77 14.62 16.77 14.62 18.04 15.46 表 5 0.15 mm/0.25 mm孔径制冷器流量方差
Table 5 Flow rate variance of cryocoolers with 0.15 mm and 0.25 mm orifice
Cryocooler number Flow rate variance under 29 MPa Flow rate variance under 22 MPa Cryocooler number Flow rate variance under 29 MPa Flow rate variance under 22 MPa A1 1.6938 4.2229 B1 1.29545 0.7829 A2 0.3662 4.4915 B2 0.349 7.69565 A3 0.2373 1.1035 B3 0.1465 7.87085 A4 10.6209 9.1825 B4 0.88745 3.19945 A5 1.5233 3.1176 B5 13.53105 13.1805 A6 1.3625 3.6671 B6 11.95525 4.1665 A7 0.3465 0.1301 B7 1.7833 1.76885 A8 1.8512 4.2841 B8 12.72625 36.75545 A9 0.2235 1.6023 B9 0.80645 0.3528 Avarage 2.6932 3.5335 Avarage 4.8311 8.4192 -
[1] 王三煜. 记忆合金调节式制冷器研究[J]. 红外技术, 2007, 29(9): 528-535. DOI: 10.3969/j.issn.1001-8891.2007.09.009 WANG Sanyu. A self-regulated cryocooler made by SMA[J]. Infrared Technology, 2007, 29(9): 528-535. DOI: 10.3969/j.issn.1001-8891.2007.09.009
[2] 孙维国, 黄水安. 空空导弹光电探测器设计[M]. 北京: 国防工业出版社, 2006. SUN Weiguo, HUANG Shui'an. Air-to-Air Missile Photo-Detectors Design[M]. Beijing: National Defense Industry Press, 2006.
[3] 李崇剑, 郑玉红, 万发荣, 等. Cu-Al-Mn系低温形状记忆合金的微结构研究[J]. 有色金属, 2007, 59(4): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200704001.htm LI Chongjian, ZHENG Yuhong, WAN Farong, et al. Microstructure of Cu-Al-Mn alloy with shape memory effect at low temperature[J]. Nonferrous Metals, 2007, 59(4): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200704001.htm
[4] 莫露, 万发荣, 龙毅, 等. 低温形状记忆合金的相变温度变化[J]. 有色金属工程, 2012, 1: 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS201201019.htm MO Lu, WAN Farong, LONG Yi, et al. Phase-transition temperature variation of low temperature shape memory alloy[J]. Engineering Improvement, 2012, 1: 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS201201019.htm
[5] 杨杰, 吴月华, 周榆生, 等. 记忆合金螺旋弹簧的性能测试及设计方法[J]. 中国科学技术大学学报, 1992, 22(1): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD199201006.htm YANG Jie, WU Yuehua, ZHOU Yusheng, et al. Characteristic measurement and design for helical spring of shape memory alloy[J]. Journal of China University of Science and Technology, 1992, 22(1): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD199201006.htm
[6] 吴甲斌. 热力膨胀阀调节制冷剂流量的稳定性分析[J]. 交通部上海船舶运输科学研究所学报, 1995, 18(1): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-JTYS501.008.htm WU Jiabin. Analysis of stability of refrigerating flow rate adjusted with thermostatic expansion valve[J]. Journal of SSSRI, 1995, 18(1): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-JTYS501.008.htm
[7] 龙天渝, 蔡增基. 流体力学[M]. 北京: 建筑工业出版社, 2004. LONG Tianyu, CAI Zengji. Fluid Mechanics[M]. Beijing: Beijing China Building Industry Press, 2004: 90-131.
-
期刊类型引用(2)
1. 赵佳乐,王广龙,周冰,应家驹,王强辉,李秉璇. 基于边缘剔除的陆基高光谱图像噪声评估方法. 激光技术. 2023(01): 121-126 . 百度学术
2. 闫钧华,黄伟,张寅,许祯瑜,苏恺. 天基高光谱图像仿真算法. 电子设计工程. 2019(13): 165-170 . 百度学术
其他类型引用(1)