广角衍射光学元件的优化设计

杨亮亮, 刘成林, 赵勇兵, 沈法华, 赵琪, 刘建利

杨亮亮, 刘成林, 赵勇兵, 沈法华, 赵琪, 刘建利. 广角衍射光学元件的优化设计[J]. 红外技术, 2024, 46(3): 256-260.
引用本文: 杨亮亮, 刘成林, 赵勇兵, 沈法华, 赵琪, 刘建利. 广角衍射光学元件的优化设计[J]. 红外技术, 2024, 46(3): 256-260.
YANG Liangliang, LIU Chenglin, ZHAO Yongbing, SHEN Fahua, ZHAO Qi, LIU Jianli. Optimal Design of Wide Angle Diffractive Optical Element[J]. Infrared Technology , 2024, 46(3): 256-260.
Citation: YANG Liangliang, LIU Chenglin, ZHAO Yongbing, SHEN Fahua, ZHAO Qi, LIU Jianli. Optimal Design of Wide Angle Diffractive Optical Element[J]. Infrared Technology , 2024, 46(3): 256-260.

广角衍射光学元件的优化设计

基金项目: 

国家自然科学基金 61904158

江苏省智能光电器件与测控工程研究中心开放基金 306054014

江苏省重点研发计划-社会发展项目 BE2021685

江苏省自然科学基金面上项目 BK20201475

详细信息
    作者简介:

    杨亮亮(1986-),女,博士,副教授,主要从事衍射光学和光学设计方面的研究。E-mail: yang_liangliang@163.com

  • 中图分类号: O436

Optimal Design of Wide Angle Diffractive Optical Element

  • 摘要: 为进一步研究入射角度的增大对衍射光学元件(diffractive optical element, DOE)衍射效率及微结构高度等参数的影响,分析了入射角度和周期宽度对带宽积分平均衍射效率的影响。基于扩展标量衍射理论,建立了DOE的微结构高度与入射角度和周期宽度的数学模型,提出了工作在一定入射角度范围内,基于复合带宽积分平均衍射效率(comprehensive polychromatic integral diffraction efficiency, CPIDE)最大化实现设计波长和微结构高度等结构参数的优化设计方法。以工作在红外波段的DOE为例进行分析。结果表明:当相对周期宽度为20,入射角度范围为0°~40°时,该DOE的CPIDE为94.15%,微结构高度为1.3396 μm。该设计方法可以实现广角DOE的优化设计。
    Abstract: The influence of the incident angle on the diffraction efficiency and microstructure height of the diffractive optical element (DOE) was analyzed to further study the influence of the incident angle and period width on the polychromatic integral diffraction efficiency (PIDE). Based on the extended scalar diffraction theory (ESDT), a mathematical model of the relationship among the microstructure height, incident angle, and period width of the DOE was established. An optimal design method for structural parameters, such as the design wavelength and microstructure height, was proposed based on maximizing the comprehensive PIDE (CPIDE) within a certain range of incident angles. A DOE operating within the infrared waveband was considered as an example. The results indicate that when the relative period width is 20 and the incidence angle range is 0° to 40°, the CPIDE of the DOE is 94.15%, and the microstructure height is 1.3396 μm. This design method can realize the optimal design of a wide-angle DOE.
  • 图  1   光线经过DOE的传播模型

    Figure  1.   Propagation model of light passing through DOE

    图  2   正入射时的PIDE与波长的关系

    Figure  2.   Relationship between PIDE and wavelength at normal incidence

    图  3   衍射效率与波长的关系

    Figure  3.   Relationship between diffraction efficiency and wavelength

    图  4   PIDE与入射角度的关系

    Figure  4.   Relationship between PIDE and incident angles

    图  5   微结构高度与周期宽度的关系

    Figure  5.   Microstructure height versus period width

    图  6   不同入射角度时PIDE与波长的关系

    Figure  6.   PIDE versus wavelength at different incident angles

    图  7   衍射效率与波长关系的对比

    Figure  7.   Comparison of the relationship between diffraction efficiency and wavelength

    图  8   一定周期宽度时的PIDE与入射角度和波长的关系

    Figure  8.   PIDE versus incident angle and wavelength at a certain period width

    表  1   微结构高度与周期宽度的关系

    Table  1   Relationship between microstructure height and period width

    Incident angle/(°) Period width /λ
    5 10 20 30
    0 1.3758 1.3734 1.3728 1.3727 1.3726
    20 1.3579 1.3463 1.3411 1.3395 1.3365
    40 1.2689 1.2511 1.2430 1.2404 1.2355
    60 1.1266 1.1076 1.0988 1.0960 1.0907
    下载: 导出CSV

    表  2   基于带宽积分平均衍射效率最大化确定的结构参数

    Table  2   Structural parameters determined by maximum PIDE

    Parameters Incident angle/°
    0 20 40 60
    Maximum PIDE/% 94.47 94.47 94.48 94.50
    Design wavelength/μm 1.7399 1.7298 1.7220 1.7182
    Microstructure height/μm 1.3724 1.3360 1.2350 1.0904
    下载: 导出CSV

    表  3   基于带宽积分平均衍射效率最大化确定的结构参数

    Table  3   Structural parameters determined by maximum CPIDE

    Parameters Incident angle range/°
    0-20 0-40 0-60
    Design wavelength/μm 1.73 1.72 1.72
    Design angle/° 8.25 16 24
    Microstructure height/μm 1.3615 1.3396 1.3142
    CPIDE/% 94.45 94.15 92.67
    下载: 导出CSV
  • Greisukh G I, Ezhov E G, Zakharov O A, Diffractive microstructures of zoom lenses for visible and near-infrared ranges based on novel optical plastics[J]. Journal of Optical Technology, 2022, 89(3): 127-131. DOI: 10.1364/JOT.89.000127

    田晓航, 薛常喜. 小F数红外双波段无热化折衍摄远物镜设计[J]. 光学学报, 2022, 42(14): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202214023.htm

    TIAN Xiaohang, XUE Changxi. Athermalization design of small f-number refractive-diffractive telephoto objective lens in infrared dual-band[J]. Acta Optica Sinica, 2022, 42(14): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202214023.htm

    段慧慧, 杨艳芳, 何英, 等. 4π聚焦系统中衍射光学元件对聚焦场多光球结构的影响[J]. 光学学报, 2021, 41(20): 174-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202120021.htm

    DUAN Huihui, YANG Yanfang, HE Ying, et al. Influence of diffractive optical elements on multiple spherical spots in a 4π focusing system[J]. Acta Optica Sinica, 2021, 41(20): 174-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202120021.htm

    张博, 崔庆丰, 朴明旭, 等. 双波段多层衍射光学元件的基底材料选择方法研究及其在变焦系统中的应用[J]. 光学学报, 2020, 40(6): 0605001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202006005.htm

    ZHANG Bo, CUI Qingfeng, PIAO Mingxu, et al. Substrate material selection method for dual-band multilayer diffractive optical elements and its application in the zoom system[J]. Acta Optica Sinica, 2020, 40(6): 0605001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202006005.htm

    Shima G G, David Fischer, Stefan Sinzinger. Multifocal multi-value phase zone plate for 3D focusing[J]. Applied Optics, 2019, 58(32): 8943-8949. DOI: 10.1364/AO.58.008943

    XUE Changxi, CUI Qingfeng. Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency[J]. Optics Letters, 2010, 35(7): 986-988. DOI: 10.1364/OL.35.000986

    YANG Liangliang, LIU Chenglin, LI Shengqiang. Optimal design of depth-scaling error for multilayer diffractive optical elements with oblique incidence[J]. Applied Optics, 2017, 56(15): 4532-4536. DOI: 10.1364/AO.56.004532

    GAO Long, To Suet, YANG Hongfang, et al. Effect of assembling errors on the diffraction efficiency for multilayer diffractive optical elements[J]. Applied Optics, 2014, 53: 7341-7347. DOI: 10.1364/AO.53.007341

    Laborde V, Loicq J, Habraken S. Modeling infrared behavior of multilayer diffractive optical elements using Fourier optics[J]. Applied Optics, 2021, 60(7): 2037-2045. DOI: 10.1364/AO.414082

    YANG Hongfang, XUE Changxi. Sensitivity of diffraction efficiency to period width errors for multilayer diffractive optical elements[J]. Applied Optics, 2018, 57(14): 855-860.

    PANG H, YIN S Y, DENG Q L, et al. A novel method for the design of diffractive optical elements based on the Rayleigh–Sommerfeld integral[J]. Optics and Lasers in Engineering, 2015, 70: 38-44. DOI: 10.1016/j.optlaseng.2015.02.007

    Noponen E, Turunen J. Binary high-frequency-carrier diffractive optical elements: electromagnetic theory[J]. Journal of the Optical Society of America A, 1994, 11(3): 1097-1109. DOI: 10.1364/JOSAA.11.001097

    Swanson G J. Binary Optics Technology: Theoretical Limits on the Diffraction Efficiency of Multilevel Diffractive Optical Elements[R/OL]. M. I. T. Technical Report, 1991, https://api.semanticscholar.org/CorpusID:26445902.

    Greisukh G I, Danilov V A, Ezhov E G, et al. Comparison of electromagnetic and scalar methods for evaluation of efficiency of diffractive lenses for wide spectral bandwidth[J]. Optics Communications, 2015, 338: 54-57. DOI: 10.1016/j.optcom.2014.10.037

    HUO Furong, WANG Wensheng, XUE Changxi. Limits of scalar diffraction theory for multilayer diffractive optical elements[J]. Optik, 2016, 127: 5688-5694. DOI: 10.1016/j.ijleo.2016.03.062

图(8)  /  表(3)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  53
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-14
  • 修回日期:  2023-03-30
  • 刊出日期:  2024-03-19

目录

    LIU Jianli

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回