Optimal Design of Wide Angle Diffractive Optical Element
-
摘要: 为进一步研究入射角度的增大对衍射光学元件(diffractive optical element, DOE)衍射效率及微结构高度等参数的影响,分析了入射角度和周期宽度对带宽积分平均衍射效率的影响。基于扩展标量衍射理论,建立了DOE的微结构高度与入射角度和周期宽度的数学模型,提出了工作在一定入射角度范围内,基于复合带宽积分平均衍射效率(comprehensive polychromatic integral diffraction efficiency, CPIDE)最大化实现设计波长和微结构高度等结构参数的优化设计方法。以工作在红外波段的DOE为例进行分析。结果表明:当相对周期宽度为20,入射角度范围为0°~40°时,该DOE的CPIDE为94.15%,微结构高度为1.3396 μm。该设计方法可以实现广角DOE的优化设计。Abstract: The influence of the incident angle on the diffraction efficiency and microstructure height of the diffractive optical element (DOE) was analyzed to further study the influence of the incident angle and period width on the polychromatic integral diffraction efficiency (PIDE). Based on the extended scalar diffraction theory (ESDT), a mathematical model of the relationship among the microstructure height, incident angle, and period width of the DOE was established. An optimal design method for structural parameters, such as the design wavelength and microstructure height, was proposed based on maximizing the comprehensive PIDE (CPIDE) within a certain range of incident angles. A DOE operating within the infrared waveband was considered as an example. The results indicate that when the relative period width is 20 and the incidence angle range is 0° to 40°, the CPIDE of the DOE is 94.15%, and the microstructure height is 1.3396 μm. This design method can realize the optimal design of a wide-angle DOE.
-
表 1 微结构高度与周期宽度的关系
Table 1 Relationship between microstructure height and period width
Incident angle/(°) Period width /λ 5 10 20 30 ∞ 0 1.3758 1.3734 1.3728 1.3727 1.3726 20 1.3579 1.3463 1.3411 1.3395 1.3365 40 1.2689 1.2511 1.2430 1.2404 1.2355 60 1.1266 1.1076 1.0988 1.0960 1.0907 表 2 基于带宽积分平均衍射效率最大化确定的结构参数
Table 2 Structural parameters determined by maximum PIDE
Parameters Incident angle/° 0 20 40 60 Maximum PIDE/% 94.47 94.47 94.48 94.50 Design wavelength/μm 1.7399 1.7298 1.7220 1.7182 Microstructure height/μm 1.3724 1.3360 1.2350 1.0904 表 3 基于带宽积分平均衍射效率最大化确定的结构参数
Table 3 Structural parameters determined by maximum CPIDE
Parameters Incident angle range/° 0-20 0-40 0-60 Design wavelength/μm 1.73 1.72 1.72 Design angle/° 8.25 16 24 Microstructure height/μm 1.3615 1.3396 1.3142 CPIDE/% 94.45 94.15 92.67 -
Greisukh G I, Ezhov E G, Zakharov O A, Diffractive microstructures of zoom lenses for visible and near-infrared ranges based on novel optical plastics[J]. Journal of Optical Technology, 2022, 89(3): 127-131. DOI: 10.1364/JOT.89.000127
田晓航, 薛常喜. 小F数红外双波段无热化折衍摄远物镜设计[J]. 光学学报, 2022, 42(14): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202214023.htm TIAN Xiaohang, XUE Changxi. Athermalization design of small f-number refractive-diffractive telephoto objective lens in infrared dual-band[J]. Acta Optica Sinica, 2022, 42(14): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202214023.htm
段慧慧, 杨艳芳, 何英, 等. 4π聚焦系统中衍射光学元件对聚焦场多光球结构的影响[J]. 光学学报, 2021, 41(20): 174-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202120021.htm DUAN Huihui, YANG Yanfang, HE Ying, et al. Influence of diffractive optical elements on multiple spherical spots in a 4π focusing system[J]. Acta Optica Sinica, 2021, 41(20): 174-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202120021.htm
张博, 崔庆丰, 朴明旭, 等. 双波段多层衍射光学元件的基底材料选择方法研究及其在变焦系统中的应用[J]. 光学学报, 2020, 40(6): 0605001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202006005.htm ZHANG Bo, CUI Qingfeng, PIAO Mingxu, et al. Substrate material selection method for dual-band multilayer diffractive optical elements and its application in the zoom system[J]. Acta Optica Sinica, 2020, 40(6): 0605001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202006005.htm
Shima G G, David Fischer, Stefan Sinzinger. Multifocal multi-value phase zone plate for 3D focusing[J]. Applied Optics, 2019, 58(32): 8943-8949. DOI: 10.1364/AO.58.008943
XUE Changxi, CUI Qingfeng. Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency[J]. Optics Letters, 2010, 35(7): 986-988. DOI: 10.1364/OL.35.000986
YANG Liangliang, LIU Chenglin, LI Shengqiang. Optimal design of depth-scaling error for multilayer diffractive optical elements with oblique incidence[J]. Applied Optics, 2017, 56(15): 4532-4536. DOI: 10.1364/AO.56.004532
GAO Long, To Suet, YANG Hongfang, et al. Effect of assembling errors on the diffraction efficiency for multilayer diffractive optical elements[J]. Applied Optics, 2014, 53: 7341-7347. DOI: 10.1364/AO.53.007341
Laborde V, Loicq J, Habraken S. Modeling infrared behavior of multilayer diffractive optical elements using Fourier optics[J]. Applied Optics, 2021, 60(7): 2037-2045. DOI: 10.1364/AO.414082
YANG Hongfang, XUE Changxi. Sensitivity of diffraction efficiency to period width errors for multilayer diffractive optical elements[J]. Applied Optics, 2018, 57(14): 855-860.
PANG H, YIN S Y, DENG Q L, et al. A novel method for the design of diffractive optical elements based on the Rayleigh–Sommerfeld integral[J]. Optics and Lasers in Engineering, 2015, 70: 38-44. DOI: 10.1016/j.optlaseng.2015.02.007
Noponen E, Turunen J. Binary high-frequency-carrier diffractive optical elements: electromagnetic theory[J]. Journal of the Optical Society of America A, 1994, 11(3): 1097-1109. DOI: 10.1364/JOSAA.11.001097
Swanson G J. Binary Optics Technology: Theoretical Limits on the Diffraction Efficiency of Multilevel Diffractive Optical Elements[R/OL]. M. I. T. Technical Report, 1991, https://api.semanticscholar.org/CorpusID:26445902.
Greisukh G I, Danilov V A, Ezhov E G, et al. Comparison of electromagnetic and scalar methods for evaluation of efficiency of diffractive lenses for wide spectral bandwidth[J]. Optics Communications, 2015, 338: 54-57. DOI: 10.1016/j.optcom.2014.10.037
HUO Furong, WANG Wensheng, XUE Changxi. Limits of scalar diffraction theory for multilayer diffractive optical elements[J]. Optik, 2016, 127: 5688-5694. DOI: 10.1016/j.ijleo.2016.03.062