Radiation Interference Characteristics of Sub-pixel Fire Points on Infrared Early Warning Satellite
-
摘要: 亚像元火点是红外预警卫星的辐射干扰源,基于推导火点像元辐射强度方程,对不同条件下的火点像元在2.55~2.85 (m波段和4.19~4.48 (m波段的辐射强度进行数值计算,分析了影响火点像元辐射特性的因素。通过与Titan ⅢB型火箭尾焰辐射特性进行对比分析并利用实际火点数据验证了亚像元火点的辐射干扰特性,结果表明:亚像元火点在2.55~2.85 (m波段和4.19~4.48 (m波段均能够对红外预警卫星的探测造成辐射干扰,与火箭尾焰辐射特性的区别是大部分火点像元在4.19~4.48 (m波段具有更强的辐射强度,结果可为提升红外预警卫星抗火点辐射干扰能力提供理论支撑。Abstract: The sub-pixel fire point is the radiation interference source of the infrared early warning satellite (IEWS). Based on the derivation of the radiation intensity equation of the fire pixel, the radiation intensity of fire point pixels in the 2.55-2.85 (m and 4.19-4.48 (m wavebands under different conditions are numerically calculated, and the factors affecting the radiation characteristics of the fire pixel are analyzed. We compared and analyzed the radiation characteristics of the tail flame of the Titan IIIB rocket andverifiedthe actual fire data. The results showed that the sub-pixel fire points in 2.55-2.85 (m and 4.19-4.48 (m wavebands can cause radiant interference to IEWS. Moreover, the radiation characteristics of the rocket tail flames were different in that most fire pixels showed stronger radiation intensities in the 4.19-4.48 (m waveband. The results can provide theoretical support for improving the ability of IEWS to resist the interference of fire-point radiation.
-
Keywords:
- infrared early warning satellite /
- radiation interference /
- fire pixel /
- tail flame
-
-
表 1 火点像元参数的参考值与范围
Tt/K Tb/K St/km2 θs/° θz/° Value 800 300 0.1 30 30 Range 400-1600 280-320 0.01-1 0-80 0-80 表 2 火点像元辐射强度统计
Table 2 Statistics of fire pixel radiation intensity
Wavebands/μm Minimum/W·sr-1 Maximum/W·sr-1 Average/W·sr-1 Median/W·sr-1 2.55-2.85 2.771×102 6.197×106 2.456×104 7.014×103 4.19-4.48 3.412×103 5.576×106 7.449×104 4.351×104 -
[1] 江珊, 巩彩兰, 胡勇, 等.短波红外吸收带林火与背景辐射亮度比较分析[J].大气与环境光学学报, 2014, 9(3): 223-228. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY201403009.htm JIANG Shan, GONG Cailan, HU Yong, et al. Comparison of radiation characteristics of forest fire and background in short wave infrared absorption bands[J]. Journal of Atmospheric and Environmental Optics, 2014, 9(3): 223-228. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY201403009.htm
[2] 宋文韬, 胡勇, 刘丰轶, 等.基于气象卫星云图的红外吸收带火山特征分析[J].光谱学与光谱分析, 2019, 39(1): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201901014.htm SONG Wentao, HU Yong, LIU Fengyi, et al. Analysis of infrared absorption band for volcano based on meteorological satellite cloud image[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201901014.htm
[3] 黄景雨.林火虚警源红外成像特征建模及检测方法研究[D].成都: 电子科技大学, 2019. HUANG Jingyu. Detection Method of Forest Fire False Alarm Source with Infrared Imaging Feature Modeling[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
[4] 贺宝华, 陈良富, 陶金花, 等.基于观测几何的环境卫星红外相机遥感火点监测算法[J].红外与毫米波学报, 2011, 30(2): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201102003.htm HE Baohua, CHEN Liangfu, TAO Jinhua, et al. A contextual fire detection algorithm based on observation geometry for HJ-1B-IRS[J]. Journal of Infrared and Millimeter Waves, 2011, 30(2): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201102003.htm
[5] Hakan Oğuz. A Software tool for retrieving land surface temperature from aster imagery[J]. Journal of Agricultural Sciences, 2015, 21(4): 471-482.
[6] Hertel I V, Schulz C. Atoms, Molecules and Optical Physics: Atoms and Spectroscopy[M]. Springer, 2015: 34-37.
[7] 刘尊洋, 李修和. SBIRS-GEO预警卫星工作机理与探测参数分析[J].激光与红外, 2018, 48(3): 363-368. DOI: 10.3969/j.issn.1001-5078.2018.03.017 LIU Zunyang, LI Xiuhe. Study on working mechanism and detecting parameters of SBIRS-GEO early warning satellites[J]. Laser & Infrared, 2018, 48(3): 363-368. DOI: 10.3969/j.issn.1001-5078.2018.03.017
[8] 朱广赜, 何大雄.卫星扫描辐射计的地面分辨率的计算[J].中国空间科学技术, 1986(1): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ198601007.htm ZHU Guangze, HE Daxiong. The calculation of the ground resolution of the scanning radiometer for a satellite[J]. Chinese Space Science and Technology, 1986(1): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ198601007.htm
[9] 刘尊洋, 邵立, 汪亚夫, 等.基于辐射通量表观对比度光谱的红外预警卫星探测波段选择方法[J].红外与毫米波学报, 2014, 33(5): 492-497. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201405007.htm LIU Zunyang, SHAO Li, WANG Yafu, et al. A band selection method for infrared warning satellites based on radiation flux apparent contrast spectrum[J]. Journal of Infrared and Millimeter Waves, 2014, 33(5): 492-497. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201405007.htm
[10] Simmons F S. Rocket Exhaust Plume Phenomenology[M]. EI Segundo: The Aerospace Press and American Institute of Aeronautics and Astronautics, 2000: 105-112.