Measurement of Signal to Noise Ratio of UV Image Intensifier Assembly
-
摘要:
为了实现对紫外像增强器信噪比的准确测量,建立了信噪比测量装置。首先,基于紫外像增强器的工作原理,结合已有微光像增强器信噪比测试方法,测算了紫外像增强器信噪比测试所需要的入射辐射功率;其次,从紫外波段参数测量的量值传递性出发,提出了基于测算辐射强度小光点成像探测的紫外像增强器输出信噪比测试方法;然后,基于确定辐射强度小光点成像探测方法建立了紫外像增强器信噪比测试装置,并分析了该装置的测量不确定度;最后,利用校准后的测试装置测量了某型紫外像增强器的信噪比,得到了较高的测量重复性。结果表明,采用基于确定辐射强度小光点成像探测方法的紫外像增强器输出信噪比测试装置的不确定度为13.3%,利用该装置测试得到的紫外像增强器信噪比结果为15.3,测量结果的重复性偏差为2.86%,满足了紫外告警等应用场景对高信噪比紫外像增强器的测量要求。
Abstract:To comprehensively evaluate the performance of a UV image intensifier, a testing apparatus was established for measuring the signal-to-noise ratio of the UV image intensifier assembly. First, according to the working principle of the UV image intensifier and the method used to test the SNR of the low-light-level image intensifier, the incident radiation power required to measure the SNR of the UV image intensifier was calculated. Second, based on the measurement of the ultraviolet wavelength parameters, a method for testing the signal-to-noise ratio (SNR) of the UV image intensifier with a small-spot imaging detection is proposed. Subsequently, based on the detection method of small-spot imaging for determining the radiation intensity, an SNR measurement device was established for the UV image intensifier, and the measurement uncertainty of the device was analyzed. Finally, the SNR of the ultraviolet image intensifier was measured using a calibrated test device, and the measurement repeatability was high. The results showed that the uncertainty of the UV image intensifier SNR test device based on the detection method of small-spot imaging with the determined radiation intensity was 13.3%, the SNR of the UV image intensifier was 15.3, and the repeatability deviation of the SNR was 2.86%. This satisfies the measurement requirements of UV image intensifiers with a high SNR in ultraviolet alarms and other application scenarios.
-
-
表 1 入射光辐射照度重复性测量数据
Table 1 Testing data of incident irradiance
No. 1 2 3 Radiant/(W/m2) 1.89×10-6 2.11×10-6 2.05×10-6 No. 4 5 6 Radiant/(W/m2) 1.91×10-6 1.95×10-6 2.12×10-6 表 2 紫外像增强器信噪比测试结果
Table 2 Testing data of signal to noise ratio of UV image intensifier assembly
No. 1 2 3 4 5 6 Ave SNR 15.4 14.8 15.9 14.8 15.6 15.3 15.3 -
[1] 冯士维, 李瑛, 孙静莹, 等. ZnO紫外光电导型探测器的制备与研究[J]. 北京工业大学学报, 2007, 33(7): 678-681. DOI: 10.3969/j.issn.0254-0037.2007.07.002 FENG Shiwei, LI Ying, SUN Jingying, et al. The fabrication and study of ZnO photocathode UV detector[J]. Journal of Beijing University of Technology, 2007, 33(7): 678-681. DOI: 10.3969/j.issn.0254-0037.2007.07.002
[2] 阿斯亚. 紫外像增强器噪声特性研究[D]. 南京: 南京理工大学, 2013. A Siya. Study on Noise Characteristics of UV Image Intensifier[D]. Nanjing: Nanjing University of Science and Technology, 2013.
[3] 向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 2006. XIANG Shiming, NI Guoqiang. The Principle of Photoelectronic Imaging Devices[M]. Beijing: National Defense Industry Press, 2006.
[4] 王守为. 宽光谱像增强器分辨力测试技术研究[D]. 南京: 南京理工大学, 2008. WANG Shouwei. Research on Resolution Measurement Technology of Wide Spectrum Image Intensifier[D]. Nanjing: Nanjing University of Science and Technology, 2008.
[5] 闫磊, 石峰, 单聪, 等. 铝钾氮光阴极像增强器极限分辨力影响因素研究[J]. 红外技术, 2020, 42(8): 729-734. http://hwjs.nvir.cn/article/id/hwjs202008004 YAN Lei, SHI Feng, SHAN Cong, et al. Limiting resolution of AlGaN photocathode image intensifier tube[J]. Infrared Technology, 2020, 42(8): 729-734. http://hwjs.nvir.cn/article/id/hwjs202008004
[6] 贺英萍, 李敏, 尹雷, 等. 紫外像增强器分辨力和视场质量测试技术研究[J]. 应用光学, 2012, 33(2): 337-341. HE Yingping, LI Min, YIN Lei, et al. Resolution and FOV quality of UV image intensifier[J]. Journal of Applied Optics, 2012, 33(2): 337-341.
[7] 赵清波. 宽光谱像增强器辐射增益和视场缺陷测试技术研究[D]. 南京: 南京理工大学, 2008. ZHAO Qingbo. Research on Radiation Gain and Flaw of Field of View Measurement Technology of Wide Spectrum Image Intensifier[D]. Nanjing: Nanjing University of Science and Technology, 2008.
[8] 程宏昌, 石峰, 姚泽, 等. 铝钾氮光电阴极日盲紫外像增强器辐射增益研究[J]. 红外技术, 2020, 42(8): 709-714. http://hwjs.nvir.cn/article/id/hwjs202008001 CHENG Hongchang, SHI Feng, YAO Ze, et al. Radiation gain of AlGaN photocathode solar bliind UV image intensifier[J]. Infrared Technology, 2020, 42(8): 709-714. http://hwjs.nvir.cn/article/id/hwjs202008001
[9] 陈雪, 李宗轩, 闫丰, 等. 日盲紫外像增强器绝对光谱响应测试系统[J]. 光电工程, 2016, 43(5): 8-14. CHEN Xue, LI Zongxuan, YAN Feng, et al. Test system for absolute spectral response of SBUV image intensifier[J]. Opto-Electronic Engineering, 2016, 43(5): 8-14.
[10] 王生云, 解琪, 史继芳, 等. 紫外像增强器辐射灵敏度测量系统[J]. 应用光学, 2020, 41(3): 548-552. WANG Shengyun, XIE Qi, SHI Jifang, et al. Measurement system of radiation sensitivity for UV image intensifier [J]. Journal of Applied Optics, 2020, 41(3): 548-552.
[11] 金伟其, 刘广荣, 王霞, 等. 微光像增强器的进展及分代方法[J]. 光学技术, 2004(4): 460-466. DOI: 10.3321/j.issn:1002-1582.2004.04.019 JIN Weiqi, LIU Guangrong, WANG Xia, et al. Image intensifier's progress and division of generations[J]. Optical Technology, 2004(4): 460-466. DOI: 10.3321/j.issn:1002-1582.2004.04.019
[12] 钱芸生, 常本康, 童默颖, 等. 像增强器噪声频谱特性测试技术研究[J]. 光学学报, 2003, 23(1): 67-70. QIAN Yunsheng, CHANG Benkang, TONG Moying, et al. Frequency spectrum measurement of noise of image intensifiers[J]. Acta Optica Sinica, 2003, 23(1): 67-70.
[13] 钱芸生, 常本康, 詹启海, 等. 微光像增强器信噪比测试技术研究[J]. 真空科学与技术学报, 2002, 22(5): 389-391. DOI: 10.3969/j.issn.1672-7126.2002.05.016 QIAN Yunsheng, CHANG Benkang, ZHAN Qihai, et al. Development of signal-to-noise ratio tester for LLL image intensifier[J]. Vacuum Science and Technology, 2002, 22(5): 389-391. DOI: 10.3969/j.issn.1672-7126.2002.05.016
[14] BAI Xiaofeng, SHI Feng, FENG Hanliang, et al. Measurement and analysis of signal to noise ratio for image intensifier tube, 18mm microchannel plate[C]//Proc. of SPIE, 2011, 8194(81941W): 1-6.
[15] 吴星琳, 邱亚峰, 钱芸生, 等. 紫外像增强器信噪比与MCP电压的关系[J]. 应用光学, 2013, 34(3): 494-497. WU Xinglin, QIU Yafeng, QIAN Yunsheng, et al. Relationship between voltage of MCP and signal-to-noise ratio of UV image intensifier[J]. Journal of Applied Optics, 2013, 34(3): 494-497.
[16] 杨琦. 紫外像增强器视场缺陷检测技术研究[D]. 南京: 南京理工大学, 2010. YANG Qi. Research on Defect Detection Technology of Ultraviolet Image Intensifier [D]. Nanjing: Nanjing University of Science and Technology, 2010.
[17] BAI Xiaofeng, YIN Lei, HU Wen, et al. Analysis of output signal to noise ratio's uniformity for low light level image intensifier assembly[C]//Proc. of SPIE, 2013, 8908(89080Q): 1-6.
[18] 童默颖, 钱芸生, 常本康, 等. 像增强器信噪比测试仪中数字滤波器的设计[J]. 红外技术, 2002, 24(4): 12-15. DOI: 10.3969/j.issn.1001-8891.2002.04.004 TONG Moying, QIAN Yunsheng, CHANG Bengkang, et al. Finite impluse response digital filters in the signal/noise testers of image intensifier[J]. Infrared Technology, 2002, 24(4): 12-15. DOI: 10.3969/j.issn.1001-8891.2002.04.004
[19] 李辉, 钱芸生, 常本康, 等. 微光像增强器信噪比测试中的K因子研究[J]. 红外技术, 2007, 29(8): 488-490. DOI: 10.3969/j.issn.1001-8891.2007.08.015 LI Hui, QIAN Yunsheng, CHANG Benkang, et al. The research of K factor for signal-to-noise Ratio of LLL intensifier[J]. Infrared Technology, 2007, 29(8): 488-490. DOI: 10.3969/j.issn.1001-8891.2007.08.015
[20] 李碧雪. 基于像增强器的紫外光谱探测技术[D]. 长春: 长春理工大学, 2021. LI Bixue. Study on Ultraviolet Spectrum Detection Technology Based on Image Intensifier[D]. Changchun: Changchun University of Science and Technology, 2021.
[21] 杨书宁, 拜晓锋, 贺英萍, 等. 微光像增强器信噪比校正测试方法研究[J]. 红外技术, 2018, 40(10): 1019-1022. http://hwjs.nvir.cn/article/id/hwjs201810015 YANG Shuning, BAI Xiaofeng, HE Yingping, et al. The research of low-light-level image intensifier of SNR calibrate test resolution[J]. Infrared Technology, 2018, 40(10): 1019-1022. http://hwjs.nvir.cn/article/id/hwjs201810015
[22] 北京卓立汉光仪器有限公司. 光谱产品手册[EB/OL]. [2022-09-10]. http://www.zolix.com.cn/Products/1294.html. Beijing Zolix Instrument Co., LTD. Spectral Products[EB/OL]. [2022-09-10]. http://www.zolix.com.cn/Products/1294.html.
[23] Hamamatsu Photonics K K. Photomultiplier Tubes And Related Products[EB/OL]. [2020-05-28]. http://www.hamamatsu.com.cn/cn/zh-cn/product/optical-sensors/pmt.html.
[24] 任彬, 江兆潭, 郭晖, 等. 新型Ⅲ族氮化物日盲紫外变像管的研制及导弹逼近告警系统作用距离估算[J]. 兵工学报, 2017, 38(5): 924-931. REN Bin, JIANG Zhaotan, GUO Hui, et al. Experiment of new protype group Ⅲ-nitride UV image converter tube and evaluation of detectable distance of missile approach warning system with it[J]. Acta Armamentarii, 2017, 38(5): 924-931.
-
期刊类型引用(2)
1. 赵佳乐,王广龙,周冰,应家驹,王强辉,李秉璇. 基于边缘剔除的陆基高光谱图像噪声评估方法. 激光技术. 2023(01): 121-126 . 百度学术
2. 闫钧华,黄伟,张寅,许祯瑜,苏恺. 天基高光谱图像仿真算法. 电子设计工程. 2019(13): 165-170 . 百度学术
其他类型引用(1)