Abstract:
To meet the requirements of reduced load and high precision in photoelectric systems, thin silicon infrared windows were designed by increasing the surface accuracy compared with ordinary infrared window parts, and doubling the size of ordinary thin optical window parts (diameter to thickness ratio of 10:1). If the conventional process is used for processing, the parts are unable to meet the technical specifications. This study combines the processing advantages of classical polishing with the characteristics of silicon single-crystal materials; optimizes the adhesive ratio; adopts the adhesive point distribution method of bonding; and solves the processing problems of thin silicon infrared windows by changing relevant technical parameters, such as the spindle speed of the equipment and parts processing temperature. The processing of silicon windows by conventional and precision annealing were also compared.