Abstract:
Ultraviolet image intensifiers are imaging devices that are sensitive to ultraviolet radiation. Defects in the field of view are the main factors restricting the imaging effect of ultraviolet image intensifiers. Currently, the field-of-view defect detection technology is mainly divided into artificial and machine vision. This paper explains the definitions and detection standards for field defects. Subsequently, the difficulties in field defect detection are analyzed from the perspectives of defect-overlapping proximity, size, and quantity. Next, the research status of the field-of-view defect detection technology of ultraviolet image intensifiers is introduced. Combined with the current detection requirements and deficiencies, the defect detection effect of deep-learning technology in other fields was investigated. Finally, a theoretical feasibility analysis is presented, and the concept of field defect detection based on deep learning is proposed. The purpose is to provide a new solution for field defect detection of ultraviolet image intensifiers and promote their development in a practical and intelligent direction.