国内紫外像增强器视场瑕疵检测技术研究现状

丁习文, 程宏昌, 袁渊, 张若愚, 杨书宁, 杨晔, 党小刚

丁习文, 程宏昌, 袁渊, 张若愚, 杨书宁, 杨晔, 党小刚. 国内紫外像增强器视场瑕疵检测技术研究现状[J]. 红外技术, 2024, 46(2): 129-137.
引用本文: 丁习文, 程宏昌, 袁渊, 张若愚, 杨书宁, 杨晔, 党小刚. 国内紫外像增强器视场瑕疵检测技术研究现状[J]. 红外技术, 2024, 46(2): 129-137.
DING Xiwen, CHENG Hongchang, YUAN Yuan, ZHANG Ruoyu, YANG Shuning, YANG Ye, DANG Xiaogang. Research Status of Local Defect Detection Technology of Ultraviolet Image Intensifier Field of View[J]. Infrared Technology , 2024, 46(2): 129-137.
Citation: DING Xiwen, CHENG Hongchang, YUAN Yuan, ZHANG Ruoyu, YANG Shuning, YANG Ye, DANG Xiaogang. Research Status of Local Defect Detection Technology of Ultraviolet Image Intensifier Field of View[J]. Infrared Technology , 2024, 46(2): 129-137.

国内紫外像增强器视场瑕疵检测技术研究现状

详细信息
    作者简介:

    丁习文(1996-),男,安徽池州人,硕士研究生,研究方向为微光夜视检测技术研究。E-mail: 610698817@qq.com

    通讯作者:

    程宏昌(1974-),男,陕西高陵人,博士,正高工,研究方向为微光夜视成像技术研究。E-mail: chh600@163.com

  • 中图分类号: TN23, TP391.4

Research Status of Local Defect Detection Technology of Ultraviolet Image Intensifier Field of View

  • 摘要: 紫外像增强器是一种对紫外辐射敏感的成像器件,视场瑕疵是其成像效果的主要制约因素。目前,视场瑕疵检测技术主要分为人工和机器视觉两种方法。本文首先阐述了视场瑕疵的定义和检测标准。接着从瑕疵交叠靠近、大小和数量特性的角度,分析了视场瑕疵检测的难点。随后,重点介绍了紫外像增强器视场瑕疵检测技术的研究现状。结合当前的检测需求和不足,调研了深度学习技术在其他领域的瑕疵检测效果。最后,从理论上进行了可行性分析,并提出了基于深度学习视场瑕疵检测的思路,旨在为紫外像增强器视场瑕疵检测提供一种新的解决方案,推动其向着更加实用、智能化的方向发展。
    Abstract: Ultraviolet image intensifiers are imaging devices that are sensitive to ultraviolet radiation. Defects in the field of view are the main factors restricting the imaging effect of ultraviolet image intensifiers. Currently, the field-of-view defect detection technology is mainly divided into artificial and machine vision. This paper explains the definitions and detection standards for field defects. Subsequently, the difficulties in field defect detection are analyzed from the perspectives of defect-overlapping proximity, size, and quantity. Next, the research status of the field-of-view defect detection technology of ultraviolet image intensifiers is introduced. Combined with the current detection requirements and deficiencies, the defect detection effect of deep-learning technology in other fields was investigated. Finally, a theoretical feasibility analysis is presented, and the concept of field defect detection based on deep learning is proposed. The purpose is to provide a new solution for field defect detection of ultraviolet image intensifiers and promote their development in a practical and intelligent direction.
  • 红外热像仪在变电设备的热故障监测具有广泛的应用,但单帧红外图像普遍存在视场窄、分辨率低等缺点,难以准确、及时地获取变电设备的整体状态[1]。通过图像拼接可将若干存在重叠区域的图像拼接成一幅无缝、无重影的宽视场图像,有助于监测变电设备整体的状态,提高巡检效率。但传统最佳缝合线或渐入渐出融合法进行融合时,往往会导致重叠区域存在明显的拼接痕迹或重影现象。因此研究一种适用于变电设备的红外图像拼接方法具有十分重要的意义。

    针对成像场景不同而导致红外图像间存在亮度差异问题,文献[2]等提出了一种改进的红外图像拼接算法,该算法采用平台直方图均衡化提高红外图像对比度,解决了因图像亮度差异而导致的拼接痕迹,但该算法对变电站复杂场景的适应性并不强。而文献[3]通过在感兴趣区域中提取SIFT特征点并结合KLT(Kanade-Lucas-Tomasi)跟踪算法确定特征点的位置信息并进行匹配,采用渐入渐出融合算法消除拼接痕迹,使得配准率提高了3.491%。文献[4]引入图像梯度信息,利用像素亮度差计算重叠区域的边权值,并采用图切割法寻求最佳缝合线,最后利用渐入渐出方法融合过渡,对于序列遥感图像的拼接取得了较好效果,但对于变电站红外图像拼接存在鬼影现象。文献[5]为解决图像融合中运动物体与缝合线过于靠近而造成鬼影的问题,引入颜色饱和度S改进能量函数,并在最佳缝合线搜索准则中加入局部信息权重来提高搜索灵活度,一定程度上消除了因运动物体靠近缝合线而产生的鬼影,但对于噪声严重的变电站红外图像拼接存在一定的局限性。

    上述研究成果为变电站红外图像拼接提供较好的参考思路,但由于成像环境复杂、红外图像噪声干扰大,导致部分图像拼接出现明显的拼接痕迹或重影现象。因此,本文提出一种改进最佳缝合线的红外图像拼接方法,该方法在拼接区域上引入局部权重系数,并对图像颜色差异强度进行形态学操作抑制噪声干扰,并通过动态规划改进缝合线搜索准则,搜索出最佳缝合线。

    为改善因成像环境复杂而造成配准效果不佳的问题,本文首先使用SIFT算法对图像进行配准,从而实现图像的一次拼接[6],然后再采用最佳缝合线算法进行图像融合[7]

    最佳缝合线的目的是使得拼接线从两幅图像重叠区域中差异最小的位置穿过,以尽可能地减少图像的偏差而带来拼接痕迹。其求解准则E(x, y)为:

    $$ E(x, y) = E_{\text{c}}^2(x, y) + {E_{{\text{geometry}}}}(x, y) $$ (1)

    式中:Ec(x, y)为图像颜色差异强度值;Egeometry(x, y)为图像结构差异强度值。Ec(x, y)表达式为:

    $$ {E_{\rm{c}}}(x,y) = {I_{{\rm{gray}}}}_1(x,y) - {I_{{\rm{gray}}}}_2(x,y) $$ (2)

    式中:Igray1(x, y)和Igray2(x, y)分别表示两幅待拼接图像I1I2对应的灰度图。

    Egeometry(x, y)表达式为:

    $$ {E_{{\text{geometry}}}}(x, y){{ = }}{\rm{Diff}}{\text{(}}{I_1}{\text{(}}x, y{\text{) , }}{I_2}{\text{(}}x, y{\text{))}} $$ (3)

    式中:Diff为计算I1I2两幅图像在xy方向梯度差的乘积因子。

    红外图像相较于可见光图像而言,其边界模糊,信噪比低,采用式(1)求解准则所得到的能量函数图存在较多噪声,图像的边缘信息模糊,如图 1(a)所示,搜索到的最佳缝合线往往不是从能量差异值最小的位置穿过,容易导致拼接重叠区域存在明显拼缝或重影。

    图  1  能量函数图
    Figure  1.  Energy function diagram

    因此,对能量函数改进,在式(1)中引入权重系数ωxy,并对图像颜色差异强度值Ecolor(x, y)的求解进行改进,求解准则Ea(x, y)定义为:

    $$ {E_{\rm{a}}}(x, y) = {\omega _{xy}}(E_{{\text{color}}}^2(x, y) + {E_{{\text{geometry}}}}(x, y)) $$ (4)

    式中:Ecolor(x, y)为改进后的图像颜色差异强度值;而Egeometry(x, y)通过式(3)求解;ωxyI1I2重叠区域上点(x, y)处加权值。

    $$ {\omega _{xy}} = \left\{ {\begin{array}{*{20}{c}} {k\frac{{{\delta _{xy}}}}{{{\delta _{\text{M}}}}}}&{{\delta _{xy}} < 0.7{\delta _{\text{M}}}} \\ { + \infty }&{{\text{others}}} \end{array}} \right. $$ (5)

    式中:k为差异图像加权系数;δxyI1I2重叠区域上点(x, y)处的差异值,δM=max(δxy)。δxy定义为:

    $$ {\delta _{xy}}{\text{ = }}\frac{{\left| {{I_1}{\text{(}}x, y{\text{) }} - {I_2}{\text{(}}x, y{\text{)}}} \right|}}{{\max {\text{(}}{I_1}{\text{(}}x, y{\text{) , }}{I_2}{\text{(}}x, y{\text{))}}}} $$ (6)

    引入形态学操作对Ecolor(x, y)的求解进行改进,采用灰度差图像的绝对值来近似计算,则:

    $$ E_{{\text{color}}}^{}(x, y) = \left\{ \begin{gathered} {I_{12}}(x, y) \times {W_{{\text{color}}}}\quad {I_{\text{bin}}}(x, y) = 1 \hfill \\ {I_{12}}(x, y)\quad \quad \quad \;\, \, {I_{\text{bin}}}(x, y) = 0\; \hfill \\ \end{gathered} \right. $$ (7)

    式中:I12为灰度差图像;Ibin为二值图像;Wcolor为权重系数。

    灰度差图像I12通过式(8)求解:

    $$ {I_{12}}(x, y) = {\text{abs(}}{I_{\text{gray}}}_1(x, y) - {I_{\text{gray}}}_2(x, y){\text{)}} $$ (8)

    二值图像Ibin根据式(9)求解:

    $$ {I_{{\rm{bin}}}}(x,y)= \left\{ {\begin{array}{*{20}{c}} 1&{({I_{12}}(x, y) \geqslant 1.5 \times {\rm{Imag}}{{\rm{e}}_{{\rm{avg}}}})} \\ 0&{({I_{12}}(x, y) < 1.5 \times {\rm{Imag}}{{\rm{e}}_{{\rm{avg}}}})} \end{array}} \right. $$ (9)

    式中:Imageavg为灰度差图像I12重叠区域内(x, y)像素的平均值。

    图 1(a)图 1(b)分别为改进前与本文改进后的能量函数图。通过对比可以发现,图 1(a)噪声较多,纹理不清晰;图 1(b)图像中大量噪声已经被滤除,同时也保留了图像重要的纹理信息,图像目标边缘和结构信息更清晰,更能突显红外图像的颜色差异与结构差异。

    传统的最佳缝合线搜索路径时,仅搜索所在位置下一行中的3个紧邻点,最大仅能向下方45°方向扩展,搜索路径上存在一定限制。因此,本文对搜索方法进行改进,由原来只搜索3个紧邻点扩展至搜索下一行中9个紧邻点,改进的搜索流程图,如图 2所示。

    图  2  基于动态规划搜索准则的改进搜索流程图
    Figure  2.  Improved search flow chart is based on dynamic programming search criteria

    ① 设两幅待拼接图像I1I2的重叠区域列数为m,把图像重叠区域中第一行的每个像素点作为缝合线的初始点,即m列对应m条缝合线;

    ② 搜索缝合线的扩展点。选择每条缝合线当前点(x, k)下一行的9个紧邻点作为备选扩展点,当前点与备选扩展点之间路径的能量值计算公式为:

    $$ {E_{{\text{sum}}}}(x, y){\text{ = }}\left\{ {\begin{array}{*{20}{c}} {\sum\limits_{i{\text{ = }}k + 1}^y {{E_{\text{N}}}(x, i)} }&{0 < y - k \leqslant 4} \\ 0&{y = k} \\ {\sum\limits_{i{\text{ = }}y}^{k - 1} {{E_{\text{N}}}(x, i)} }&{ - 4 \leqslant y - k < 0} \end{array}} \right. $$ (10)

    式中:Esum(x, y)表示第x行中的第y列到第k列之间所有点的能量值之和。EN(x, i)为点(x, i)的能量值。

    将每个备选扩展点的能量值与式(10)计算路径的能量值Esum(x, y)相加,得到备选扩展点总的能量值。进而一一比较每个备选扩展点总的能量值,选择最小值Es(x+1, y)的备选扩展点作为缝合线的扩展点。Es(x+1, y)的计算式为:

    $$ {E_{\text{s}}}(x{\text{ + }}1, y){\text{ = }}\mathop {\min }\limits_{k - 4 \leqslant y \leqslant k + 4} ({E_{\text{N}}}(x + 1, y) + {E_{{\text{sum}}}}(x, y)) $$ (11)

    式中:k为缝合线扩展当前点(x, k)前所在的列,x+1、y为当前点在下一行备选扩展点的行、列。确定新扩展点后,更新得到缝合线扩展后的能量值S(x+1, y),即:

    $$ S(x+1, y)=S(x, k)+E_{2}(x+1, y) $$ (12)

    式中:S(x, k)表示缝合线扩展前的能量值。

    ③ 完成当前行后继续返回步骤②扩展下一行的点,直至扩展至图像最后一行,跳转到步骤④;

    ④ 经过前面3个步骤,得到m条缝合线。从m条缝合线中,将能量值最小的缝合线选定为最佳缝合线。

    改进最佳缝合线的红外图像拼接算法流程图,如图 3所示。

    图  3  改进最佳缝合线的红外图像拼接方法流程
    Figure  3.  Improved infrared image Mosaic algorithm flow of the best seam-line

    先采用SIFT算法提取图像区域特征,实现图像配准;然后在重合区域上引入局部权重系数对图像颜色差异强度进行形态学操作,抑制噪声干扰进而改善能量函数图的纹理信息;最后通过动态规划改进缝合线搜索准则,搜索出最佳缝合线,进而完成图像拼接。

    为了验证算法的有效性,将本文方法与渐入渐出法、ORB算法、基于颜色校正的全景图像拼接方法[8]、传统最佳缝合线法进行对比实验,实验平台为PyCharm2019+Python3.6。

    使用红外热像仪采集绝缘子图像,分辨率为384×288。绝缘子图像如图 4所示。

    图  4  绝缘子图像
    Figure  4.  Two insulator images

    图 4的红外图像进行初步拼接,然后由最佳缝合线求解准则得到能量函数图,再通过动态规划方法搜索到缝合线,如图 5所示。

    图  5  绝缘子图像的能量函数图
    Figure  5.  Energy function diagram of insulator image

    图 5(a)图 5(b)可知,改进前能量函数图的噪声严重,缝合线受噪声干扰较大,改进后能量函数图的噪声得到了明显抑制,使得图像重叠区域的结构和边缘更清晰,缝合线很好地沿着能量最低的区域经过,避免拼接图像出现局部错位。

    不同算法的拼接效果如图 6所示。由图得知,通过渐入渐出法拼接后的图像,在电缆处出现明显重影。采用ORB算法拼接的图像,在绝缘子顶部的电缆接头处存在噪声斑点。基于颜色校正的全景图像拼接方法得到的图像,虽然噪声斑点较少,但是在电缆处存在明显的重叠和错位现象。采用传统最佳缝合线法拼接的图像同样存在错位现象。

    图  6  绝缘子图像拼接效果
    Figure  6.  Insulator image stitching effect

    相对于以上算法的拼接结果,采用本文改进最佳缝合线法拼接的图像,图像中局部放大区域未出现重影,融合的过渡区域无错位现象,细节更加清晰。这有助于后续获取变电设备的细节信息,从而更加高效地监测电气设备的整体状态。

    使用红外热像仪采集的变压器图像如图 7所示。

    图  7  变压器图像
    Figure  7.  Transformer image

    图 7的红外图像进行初步拼接,然后由最佳缝合线求解准则得到能量函数图,再通过动态规划方法搜索找到缝合线,如图 8所示。

    图  8  变压器图像的能量函数图
    Figure  8.  Energy function diagrams of the transformer images

    通过图 8(a)图 8(b)对比可知,改进前能量函数图的噪声严重,缝合线受噪声干扰较大;改进后能量函数图去除了大部分干扰信息,图像重叠区域的结构和边缘更清晰,使得缝合线能很好地沿着能量最低的区域经过,能有效避免拼接图像局部出现变形错位。

    不同算法的拼接效果如图 9所示。由图得知,采用渐入渐出法拼接后的图像,虽然没有明显的拼接缝隙,但在图像重叠区域边缘出现了重影现象。基于ORB算法的拼接图像同样出现重影现象。基于颜色校正的全景图像拼接方法拼接后的图像,由于图像配准存在偏差,导致图像出现错位现象。传统最佳缝合线法拼接后的图像,虽然没有明显的重影现象,但在融合区域存在拼接痕迹。

    图  9  变压器图像拼接效果
    Figure  9.  Transformer image stitching effect

    本文改进最佳缝合线法拼接后的图像,由于最大限度地避免缝合线穿过两幅图像差异较大的区域,相对以上算法的拼接结果,均未出现重影和错位现象,整体视觉效果更好。

    为评价改进算法的效果,反映红外图像的细节信息,选取了文献[9]所用的平均梯度AG、图像清晰度FD和图像边缘强度EI指标衡量改进算法的图像拼接效果。

    平均梯度AG表示图像平滑程度,反映图像细节反差能力,其数值越高,表示图像信息更丰富,图像细节保留更好,拼接效果过渡更自然。计算式为:

    $$ {A_{\rm{G}}} = \frac{1}{{M \times N}}\sum\limits_{i = 1}^M {\sum\limits_{j = 1}^N {\sqrt {\frac{1}{2}\left( {{{\left( {{{\partial f} / {\partial x}}} \right)}^2} + {{\left( {{{\partial f} / {\partial y}}} \right)}^2}} \right)} } } $$ (13)

    式中:M×N为图像的尺寸;∂f/∂x表示图像在水平方向的梯度,而∂f/∂y表示图像在垂直方向的梯度。

    图像清晰度FD反映细节纹理信息,数值越高,表示图像的清晰程度越好,细节保留得越好。图像边缘强度EI则反映图像的边缘信息,其数值越高,表示图像边缘越清晰。

    表 1给出了平均梯度AG、图像清晰度FD和图像边缘强度EI的评价结果,从表中的数据可以看出:在绝缘子和变压器图像拼接实验中,采用本文改进的最佳缝合线方法与渐入渐出法、ORB算法、基于颜色校正的全景图像拼接方法和传统最佳缝合线方法相比,平均梯度AG的均值分别提高了2.74%、14.84%、8.54%和1.18%,这表明图像的信息更丰富,图像细节保留更好。图像清晰度FD的均值分别提高了3.27%、21.03%、8.75%和1.5%,即改进算法的拼接图像效果清晰度更好。边缘强度EI的均值分别提高了2.40%、5.7%、0.93%和1.05%,这表明改进算法在红外图像拼接中,图像边缘清晰度更好。

    表  1  拼接效果性能评价指标
    Table  1.  Performance evaluation of image fusion algorithms
    Experiment Algorithm AG FD EI
    Insulator image Fade in and fade out algorithm 7.0990 9.5881 70.8824
    Image stitching based on ORB algorithm 6.6598 8.4017 68.6762
    Fast Panorama Stitching method based on color correction 7.0382 9.4342 70.6413
    The traditional best seam-line method 7.1702 9.6849 71.4189
    The improved best seam-line method 7.1971 9.7345 71.6704
    The transformer image Fade in and fade out algorithm 5.9331 6.8986 63.6720
    Image stitching based on ORB algorithm 5.0789 5.7405 61.6745
    Fast Panorama Stitching method based on color correction 5.3790 6.3366 65.7563
    The traditional best seam-line method 6.0560 7.0687 64.8862
    The improved best seam-line method 6.1768 7.2439 66.0150
    下载: 导出CSV 
    | 显示表格

    本文针对变电站场景的红外图像,提出了一种改进最佳缝合线的红外图像拼接方法。利用改进的算法进行图像拼接后,图像融合区域过渡更平滑,拼接痕迹明显减少,且拼接后的图像在平均梯度、图像清晰度和图像边缘强度均有所提高,有效地避免了结果图像出现明显拼接痕迹等问题,有助于后续获取变电设备整体的准确状态,对提高巡检效率具有重要意义。

  • 图  1   采集的视场图像中典型瑕疵示例

    Figure  1.   Typical defect examples in the field of view image acquisition

    图  2   同类瑕疵存在相互靠近的情况

    Figure  2.   Similar defects are close to each other

    图  3   视场中小瑕疵数量多、分布杂乱

    Figure  3.   The number of small defects in the field of view is large and the distribution is messy

    图  4   人工检测示意图

    Figure  4.   Manual detection diagram

    图  5   基于机器视觉瑕疵检测流程

    Figure  5.   Defect detection process based on the machine vision

    图  6   基于简化版Robert算法的视场瑕疵检测

    Figure  6.   Defect detection based on simplified Robert algorithm

    图  7   基于Canny算法的视场瑕疵检测

    Figure  7.   Defect detection based on Canny algorithm

    图  8   在荧光屏中人为引入1个瑕疵的测试结果

    Figure  8.   The test results of intentionally introducing one defect on the fluorescent screen

    图  9   海康威视Vision Master算法平台的检测效果:(a) 表面亮斑;(b) 表面划痕;(c) 形状异常;(d) 轮廓残缺;(e) 划痕检测;(f) 字符缺陷;(g) 崩边检测;(h) 污渍检测;(e) 划痕检测;(f) 字符缺陷;(g) 崩边检测;(h) 污渍检测

    Figure  9.   The detection results of Hikvision's Vision Master algorithm platform: (a) Surface speck; (b) Surface scratch; (c) Shape anomaly; (d) Contour incomplete; (e) Scratch detection; (f) Character defect; (g) Edge collapse detection; (h) Stain detection

    表  1   视场中各分区允许不同大小暗点存在的数量

    Table  1   The allowed number of scotoma of different sizes in each zone of the FOV

    Size of the scotoma /mm Different zones of the FOV
    ϕ5.6 mm ϕ5.6 mm to ϕ14.7 mm ϕ14.7 mm to ϕ18 mm
    ≥0.457 0 0 0
    0.381 to 0.457 0 0 2
    0.305 to 0.381 0 5 8
    0.229 to 0.305 1 9 23
    0.152 to 0.229 3 35 35
    ≤0.152 Sparsely scattered and can be ignored
    下载: 导出CSV

    表  2   样本中各类型瑕疵数量占比情况

    Table  2   The proportion of each type of defect in the samples

    Defect types Scotoma Bright spot Macula Speck Stripe
    Number 2692 369 435 172 481
    Percentage 64.98% 8.89% 10.48% 4.15% 11.59%
    下载: 导出CSV

    表  3   不同机器视觉视场瑕疵检测方法的对比

    Table  3   Comparison of different machine vision field of view defect detection methods

    Detection algorithm Key technical features Advantages Limitation Literature reference
    Threshold segmentation-based algorithm Using a fixed threshold method Compared to manual detection, it improves the efficiency of field defect detection Prone to interference from external factors, requiring manual assistance in discrimination Reference [4]
    Employing a multi-region thresholding method Further enhancing the detection accuracy of field defects Prone to interference from external factors, requiring manual assistance in discrimination Reference [5]
    Manually adjusting the threshold based on the actual field conditions Designed two detection modes, 'full-screen' and 'half-screen', to meet different detection needs The detection speed of defects is relatively slow Reference [6]
    Edge-based segmentation algorithm Employed a simplified Robert edge operator Simpler and faster defect detection The detection performance is not satisfactory for complex and irregular field defects Reference [7]
    Utilized the Canny edge operator More accurate localization with the design of an automatic method for selecting specific detection areas, thereby improving defect detection speed There is a certain deviation in selecting the detection area, leading to the omission of defects along the edges of the region Reference [8]
    Based on signal-to-noise ratio (SNR) theory Utilizing spatiotemporal signal-to-noise ratio differences in the field defect regions High detection accuracy and not limited by the shape of defects Prone to interference from external factors, unable to determine the shape and size of field defects Reference [9]
    下载: 导出CSV

    表  4   人工检测与机器视觉检测的对比

    Table  4   Comparison between manual detection and machine vision detection

    Detection method Advantages Shortcomings Detection accuracy Detection speed
    Manual inspection The method is simple, with relatively good reliability, and flexible operation Low detection efficiency, with relatively high labor costs Relatively high Relatively low
    Machine vision inspection Fast detection efficiency and speed, with excellent detection results For the detection of complex defects, the performance is not satisfactory, and manual intervention in testing is required Moderate Moderate
    下载: 导出CSV

    表  5   基于深度学习的瑕疵检测的部分研究应用

    Table  5   Some research applications of defect detection based on deep learning

    Detection method Inspected object Experimental results Literature reference
    Convolutional neural network (CNN) Currency note image The defect recognition accuracy is 95.6% Reference[13]
    Cold-rolled steel plate The model achieves a defect detection accuracy of 93% Reference [14]
    Fabric Defect classification accuracy is over 95% Reference [15]
    Solar panel Defect detection accuracy is above 88.42% Reference [16]
    Fully convolutional network (FCN) Crack Addressing the issue of local information loss in detection Reference [17]
    Concrete The recognition accuracy of surface crack defects can reach 90% Reference [18]
    TFT-LCD Accurate positioning and recognition of conductive particles can be achieved Reference [19]
    Steel The classification accuracy of defects is above 91.6% Reference [20]
    Auto encoder (AE) Fabric The accuracy of defect detection is consistently above 98.75% Reference [21]
    Rail Achieved excellent defect detection results Reference [22]
    Steel The defect classification rate is improved by about 16% compared to traditional methods Reference [23]
    Residual network(ResNet) Corn leaf blade The accuracy of identifying diseases and pests can reach 98.5% Reference [24]
    Photovoltaic panel The accuracy of recognizing ash accumulation level is 90.7% Reference [25]
    Deep belief network(DBN) Wooden board Outperforms traditional CNN detection methods in performance Reference [26]
    Cable tunnel More accurate and versatile compared to existing algorithms Reference [27]
    Metal Low scratch omission rate, better detection performance Reference [28]
    Recurrent neural network(RNN) Mobile phone screen The average accuracy for samples with complex sizes and shapes is 90.36% Reference [29]
    下载: 导出CSV
  • [1] 石峰, 程宏昌, 闫磊, 等. 紫外探测技术[M]. 北京: 国防工业出版社, 2017.

    SHI Feng, CHENG Hongchang, YAN Lei, et al. Ultraviolet Detection Technology[M]. Beijing: National Defense Industry Press, 2017.

    [2] 林祖伦, 王小菊. 光电成像导论[M]. 北京: 国防工业出版社, 2016.

    LIN Zulun, WANG Xiaoju. Introduction to Photoelectric Imaging[M]. Beijing: National Defense Industry Press, 2016.

    [3] 汪贵华. 光电子器件[M]. 3版: 北京: 国防工业出版社, 2020.

    WANG Guihua. Optoelectronic Devices[M]. 3rd edition: Beijing: National Defense Industry Press, 2020.

    [4] 许正光, 王霞, 王吉晖, 等. 像增强器视场缺陷检测方法研究[J]. 应用光学, 2005(3): 12-15. DOI: 10.3969/j.issn.1002-2082.2005.03.004

    XU Zhengguang, WANG Xia, WANG Jihui, et al. Research of an approach to detect field defects of image intensifier[J]. Application Optics, 2005(3): 12-15. DOI: 10.3969/j.issn.1002-2082.2005.03.004

    [5] 王吉晖, 金伟其, 王霞, 等. 基于数学形态学的像增强器缺陷的图像检测方法[J]. 光学技术, 2005(3): 463-464, 467.

    WANG Jihui, JIN Weiqi, WANG Xia, et al. Flaw inspection method for image tube based on image processing[J]. Optical Technology, 2005(3): 463-464, 467.

    [6] 赵清波. 宽光谱像增强器辐射增益和视场缺陷测试技术研究[D]. 南京: 南京理工大学, 2008.

    ZHAO Qingbo. Research on Radiation Gain and Field Defect Test Technology of Wide Spectrum Image Intensifier[D]. Nanjing: Nanjing University of Science and Technology, 2008.

    [7]

    FU Rongguo, WEI Yifang, YANG Qi, et al. The analysis of the defects of the view field of the UV image intensifier[C]//Sensors and Systems for Space Applications X of SPIE, 2017, 10196: 19-26.

    [8] 杨琦. 紫外像增强器视场缺陷检测技术研究[D]. 南京: 南京理工大学, 2011.

    YANG Qi. Research on Defect Detection Technology of Ultraviolet Image Intensifier[D]. Nanjing: Nanjing University of Science and Technology, 2011.

    [9]

    ZHOU B, LIU B, WU D. Research on testing field flaws of image intensifier based on spatio-temporal SNR[C]//5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Detector, Imager, Display, and Energy Conversion Technology of SPIE, 2010, 7658: 691-695.

    [10] 孙文政. 基于深度学习和机器视觉的手机屏幕瑕疵检测方法研究[D]. 济南: 山东大学, 2019.

    SUN Wenzheng. Research on Mobile Phone Screen Defect Detection Method Based on Deep Learning and Machine Vision[D]. Jinan: Shandong University, 2019.

    [11] 汤勃, 孔建益, 伍世虔. 机器视觉表面缺陷检测综述[J]. 中国图象图形学报, 2017, 22(12): 1640-1663.

    TANG Bo, KONG Jianyi, WU Shiqian. Review of machine vision surface defect detection[J]. Chinese Journal of Image and Graphics, 2017, 22(12): 1640-1663.

    [12] 张涛, 刘玉婷, 杨亚宁, 等. 基于机器视觉的表面缺陷检测研究综述[J]. 科学技术与工程, 2020, 20(35): 14366-14376. DOI: 10.3969/j.issn.1671-1815.2020.35.004

    ZHANG Tao, LIU Yuting, YANG Yaning, et al. Review of surface defect detection based on machine vision[J]. Science, Technology and Engineering, 2020, 20(35): 14366-14376. DOI: 10.3969/j.issn.1671-1815.2020.35.004

    [13]

    KE Wang, WANG Huiqin, YUE Shu, et al. Banknote image defect recognition method based on convolution neural network[J]. International Journal of Security and Its Applications, 2016, 10(6): 269-280. DOI: 10.14257/ijsia.2016.10.6.26

    [14] 顾佳晨, 高雷, 刘路硌. 基于深度学习的目标检测算法在冷轧表面缺陷检测中的应用[J]. 冶金自动化, 2019, 43(6): 19-22.

    GU Jiachen, GAO Lei, LIU Luke. Application of object detection algorithm based on deep learning for inspection of surface defect of cold rolled strips[J]. Metallurgical Automation, 2019, 43(6): 19-22.

    [15] 景军锋, 刘娆. 基于卷积神经网络的织物表面缺陷分类方法[J]. 测控技术, 2018, 37(9): 20-25.

    JING Junfeng, LIU Rao. Classification method of fabric surface defects based on convolution neural network[J]. Measurement and Control Technology, 2018, 37(9): 20-25.

    [16]

    Deitsch S, Christlein V, Berger S, et al. Automatic classification of defective photovoltaic module cells in electroluminescence images[J]. Solar Energy, 2019, 185: 455-468. DOI: 10.1016/j.solener.2019.02.067

    [17] 王森, 伍星, 张印辉, 等. 基于深度学习的全卷积网络图像裂纹检测[J]. 计算机辅助设计与图形学学报, 2018, 30(5): 859-867.

    WANG Sen, WU Xing, ZHANG Yinhui, et al. Image crack detection with fully convolutional network based on deep learning[J]. Journal of Computer Aided Design and Graphics, 2018, 30(5): 859-867.

    [18]

    DUNG C V. Autonomous concrete crack detection using deep fully convolutional neural network[J]. Automation in Construction, 2019, 99: 52-58. DOI: 10.1016/j.autcon.2018.11.028

    [19]

    LIU Y, YANG Y, WANG C, et al. Research on surface defect detection based on semantic segmentation[C]//Advanced Science and Industry Research Center Proceedings of 2019 International Conference on Artificial Intelligence, Control and Automation Engineering(AICAE 2019), 2019: 416-420.

    [20]

    DONG Y, WANG J, WANG Z, et al. A deep-learning-based multiple defect detection method for tunnel lining damages[J]. IEEE Access, 2019, 7: 182643-182657. DOI: 10.1109/ACCESS.2019.2931074

    [21]

    TIAN H, LI F. Autoencoder-based fabric defect detection with cross-patch similarity[C]//16th International Conference on Machine Vision Applications (MVA) of IEEE, 2019: 1-6.

    [22]

    WEI Y H, NI Y Q. Variational autoencoder-based approach for rail defect identification[C]//12th International Workshop on Structural Health Monitoring: Enabling Intelligent Life-Cycle Health Management for Industry Internet of Things (IIOT), 2019: 2818-2824.

    [23]

    DI H, KE X, PENG Z, et al. Surface defect classification of steels with a new semi-supervised learning method[J]. Optics and Lasers in Engineering, 2019, 117: 40-48. DOI: 10.1016/j.optlaseng.2019.01.011

    [24] 黄英来, 艾昕. 改进残差网络在玉米叶片病害图像的分类研究[J]. 计算机工程与应用, 2021, 57(23): 7.

    HUANG Yinglai, AI Xin. Research on classification of corn leaf disease image by improved residual network[J]. Computer Engineering and Application, 2021, 57(23): 7.

    [25] 孙鹏翔, 毕利, 王俊杰. 基于改进深度残差网络的光伏板积灰程度识别[J]. 计算机应用, 2022, 42(12): 3733-3739.

    SUN Pengxiang, BI Li, WANG Junjie. Dust accumulation degree recognition of photovoltaic panel based on improved deep residual network[J]. Computer Application, 2022, 42(12): 3733-3739.

    [26] 李馥颖, 杨大为, 黄海. 基于改进深度置信网络的木板表面缺陷检测模型[J]. 南京理工大学学报, 2022, 46(6): 728-734.

    LI Fuying, YANG Dawei, HUANG Hai. Improved deep belief network based detection model for wood surface defects[J]. Journal of Nanjing University of Science and Technology, 2022, 46(6): 728-734.

    [27] 黄振宁, 赵永贵, 许志亮, 等. 基于判别式深度置信网络的智能电缆隧道缺陷检测技术研究[J]. 电子设计工程, 2022, 30(20): 103-107.

    HUANG Zhenning, ZHAO Yonggui, XU Zhiliang, et al. Fault detection technology for smart cable tunnel based on discriminant deep belief network[J]. Electronic Design Engineering, 2022, 30(20): 103-107.

    [28] 李文俊, 陈斌, 李建明, 等. 基于深度神经网络的表面划痕识别方法[J]. 计算机应用, 2019, 39(7): 2103-2108.

    LI Wenjun, CHEN Bin, LI Jianming, et al. Surface scratch recognition method based on deep neural network[J]. Computer Application, 2019, 39(7): 2103-2108.

    [29]

    LEI J, GAO X, FENG Z, et al. Scale insensitive and focus driven mobile screen defect detection in industry[J]. Neurocomputing, 2018, 294: 72-81. DOI: 10.1016/j.neucom.2018.03.013

  • 期刊类型引用(1)

    1. 曹世超,刘晓营,梁舒. 基于双密度双树复小波变换的红外图像降噪算法. 邢台职业技术学院学报. 2022(03): 93-97 . 百度学术

    其他类型引用(5)

图(9)  /  表(5)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  33
  • PDF下载量:  39
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-07-17
  • 刊出日期:  2024-02-19

目录

/

返回文章
返回
x 关闭 永久关闭

尊敬的专家、作者、读者:

端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

感谢您对本刊的支持!

《红外技术》编辑部

2024年6月6日