HgCdTe多层异质结红外探测材料与器件研究进展

陈正超, 唐利斌, 郝群, 王善力, 庄继胜, 孔金丞, 左文彬, 姬荣斌

陈正超, 唐利斌, 郝群, 王善力, 庄继胜, 孔金丞, 左文彬, 姬荣斌. HgCdTe多层异质结红外探测材料与器件研究进展[J]. 红外技术, 2022, 44(9): 889-903.
引用本文: 陈正超, 唐利斌, 郝群, 王善力, 庄继胜, 孔金丞, 左文彬, 姬荣斌. HgCdTe多层异质结红外探测材料与器件研究进展[J]. 红外技术, 2022, 44(9): 889-903.
CHEN Zhengchao, TANG Libin, HAO Qun, WANG Shanli, ZHUANG Jisheng, KONG Jincheng, ZUO Wenbin, JI Rongbin. Research Progress on Infrared Detection Materials and Devices of HgCdTe Multilayer Heterojunction[J]. Infrared Technology , 2022, 44(9): 889-903.
Citation: CHEN Zhengchao, TANG Libin, HAO Qun, WANG Shanli, ZHUANG Jisheng, KONG Jincheng, ZUO Wenbin, JI Rongbin. Research Progress on Infrared Detection Materials and Devices of HgCdTe Multilayer Heterojunction[J]. Infrared Technology , 2022, 44(9): 889-903.

HgCdTe多层异质结红外探测材料与器件研究进展

基金项目: 

国家重点研发计划 2019YFB2203404

云南省创新团队项目 2018HC020

详细信息
    作者简介:

    陈正超(1987-),男,博士研究生,研究方向为光电探测材料与器件

    通讯作者:

    唐利斌(1978-),男,正高级工程师,博士生导师,主要从事光电材料与器件的研究。E-mail: scitang@163.com

    郝群(1968-),女,教授,博士生导师,主要从事光学精密测试与计量。E-mail: qhao@bit.edu.cn

  • 中图分类号: TN304.054

Research Progress on Infrared Detection Materials and Devices of HgCdTe Multilayer Heterojunction

  • 摘要: HgCdTe多层异质结技术是未来主流红外探测器发展的重要技术方向,在高工作温度、双/多色和雪崩光电管等高性能红外探测器中扮演着重要的角色。近年来基于多层异质结构的HgCdTe高工作温度红外探测器得到了快速发展,尤其是以势垒阻挡型和非平衡工作P+-π(ν)-N+结构为主的器件受到了广泛的研究。本文系统介绍了势垒阻挡型和非平衡工作P+-π(ν)-N+结构HgCdTe红外探测器的暗电流抑制机理,分析了制约两种器件结构发展的关键问题,并对国内外的研究进展进行了综述。对多层异质结构HgCdTe红外探测器的发展进行了总结与展望。
    Abstract: The HgCdTe multilayer heterojunction technology is an important direction for the development of mainstream infrared detectors in the future, playing an important role in high-performance infrared detectors, such as high operating temperature (HOT) detectors, dual/multicolor detectors, and avalanche photodiodes (APDs). Recently, HgCdTe HOT infrared detectors based on multilayer heterojunction technology have been developed, particularly devices based on the barrier and non-equilibrium operating P+-π(ν)-N+ structure have been widely studied. In this review, the dark current suppression mechanisms of P+-π(ν)-N+ structure HgCdTe infrared detectors with barrier and non-equilibrium operations were systematically introduced, the key problems that restrict the development of these two types of devices were analyzed, and the relevant research progress was reviewed. We summarized and assessed the prospects of the development of multilayer heterojunction HgCdTe infrared detectors.
  • 制冷型红外探测器(以下简称红外探测器)具有响应速度更快、画质细节更细腻、灵敏度更高、探测距离更远及性能更稳定等诸多优点,已经越来越多地应用在目标搜索、目标识别、目标跟踪和目标定位等光电装备领域[1-4]。然而红外探测器在实际应用场景中一般会经历冲击激励,引起冲击响应,为了确保其能够在复杂多变的苛刻环境中通过考验,在设计阶段进行冲击环境适应性研究显得尤为重要。

    杜瓦封装是红外探测器实现产品化、实用化及工程化的关键,其可靠性直接决定了红外探测器能否正常工作。在实际服役过程中,杜瓦封装中的键合引线处于无规律振动及冲击的复杂动力学环境中,一旦振动或冲击量级过大,将产生一定程度的应力应变甚至断裂。印度国防研发组织(defence research and development organization,DRDO)从武装直升机战场实际应用环境出发,以机身振动、爆炸冲击等角度对武装直升机红外探测设备进行了理论研究[5]。中国空空导弹研究院对空空导弹的新研元器件进行了振动试验分析,并进一步提高了其元器件随机振动试验条件[6]。中国科学院微小卫星创新研究院在研究新一代北斗卫星时发现,卫星与火箭分离界面冲击响应达到了4000~12000g[7]。吴大方等[8]设计石英灯红外辐射式大热流冲击试验系统,并研究脆性试验件表面应变与热冲击之间的关系,为高超声速飞行器的透波天线窗等部件在高速大热流冲击下的安全可靠性设计提供重要依据。袁名松等[9]以巡飞攻击导弹红外成像导引头为研究对象,对系统的半正弦波冲击响应进行了有限元分析,结果表明红外成像导引头能承受住发射及分离过程中的冲击激励作用。因此,提高杜瓦封装的冲击可靠性使其更好地应用于军事及航空航天领域迫在眉睫。

    目前,少有对红外探测器中引线键合在大量级冲击环境尤其是冲击响应谱下的研究。本文针对红外探测器引线键合技术,建立有限元模型进行模态分析引线弧形,综合考虑引线材料特性选择最佳引线材料,并进行一系列工艺优化及杜瓦加固,最后通过冲击响应谱试验对引线键合质量进行评估。

    冲击试验一般分为经典冲击和冲击响应谱试验两种。经典冲击一般有半正弦波、梯形波和锯齿波3种,大量研究表明试件即使通过了经典冲击试验,在实际使用环境中仍会损坏,因此不适合采用经典冲击作为检测条件的试验规范[10]。GJB 150A[11]中也明确规定只有证明测量数据在经典脉冲的容差内,才允许采用梯形波和锯齿波的经典冲击试验,其他均以冲击响应谱作为瞬态冲击的试验标准。与经典冲击相比,冲击响应谱试验不仅研究冲击波本身,而且更加关注冲击作用与系统的效果,估计冲击对结构的损伤大小,更加接近真实的冲击环境。因此,本研究以冲击响应谱试验作为衡量红外探测器中引线键合质量的检测条件。

    考虑到冲击响应谱是针对不同频率的响应进行计算,可将红外探测器的耦合作用分解为多个线性单自由度系统,对于每个单自由度系统进行冲击响应谱计算,取系统响应的最大值,然后结合红外探测器的固有频率便可得出整个系统的冲击响应谱。图 1为单自由度(single degree of freedom,SDOF)系统的冲击响应振动模型。

    图  1  SDOF系统冲击响应振动模型
    Figure  1.  Vibration model of shock response of SDOF system

    图中,a为输入运动,b为响应运动,m为载荷质量,kc分别为SDOF的刚度系数与阻尼系数。设载荷关于时间t的位移函数为x(t),基座关于时间t的位移函数为y(t)。则在外部的加速度激励下,系统的运动方程为:

    $$ m\ddot x + c\dot x + kx = ky + c\dot y $$ (1)

    式中:$\dot x$为x(t)的一阶求导,即时间为t时载荷的速度;$\ddot x$为x(t)的二阶求导,即时间为t时载荷的加速度。$\dot y$同上。令固有角频率${\omega _{\rm{n}}} = \sqrt {\frac{k}{m}} $,阻尼因子$\xi = \frac{c}{{2\sqrt {mk} }}$,则式x变为:

    $$ \ddot x + 2\xi {\omega _{\rm{n}}}\dot x + {\omega _{\rm{n}}}^2x = {\omega _{\rm{n}}}^2y + 2\xi {\omega _{\rm{n}}}\dot y $$ (2)

    接着采用递归数值滤波法求解系统响应,其递推公式[12]如下:

    $$ {\ddot x_i} = {h_0}{p_i} + {h_1}{p_{i - 1}} + {h_2}{p_{i - 2}} + {q_1}{\ddot x_{i - 1}} + {q_2}{\ddot x_{i - 2}}, i \geqslant 3 $$ (3)
    $$ {h_0} = 1 - {{\rm{e}}^{( - A)}}\frac{{\sin B}}{B} $$ (4)
    $$ {h_1} = 2{{\rm{e}}^{( - A)}}(\frac{{\sin B}}{B} - \cos B) $$ (5)
    $$ {h_2} = {{\rm{e}}^{( - A)}}[{{\rm{e}}^{( - A)}} - \frac{{\sin B}}{B}] $$ (6)
    $$ {q_1} = 2{{\rm{e}}^{( - A)}}\cos B $$ (7)
    $$ {q_2} = - {{\rm{e}}^{( - 2A)}} $$ (8)
    $$ A=ω_{j}Δtη $$ (9)
    $$ B = {\omega _j}\Delta t\sqrt {1 - {\eta ^2}} $$ (10)
    $$ \eta = \frac{1}{{2Q}} $$ (11)

    式中:ωj=2πfjωj为系统第j阶的固有圆频率;fj为系统第j阶的固有频率;piη、ΔtQ分别为系统在时间i点受到的加速度激励值、临界阻尼比、采样间隔时间、放大系数。根据冲击响应谱的频率范围和取样间隔,得到各个小波分量频率,该频率即为各个SDOF的固有频率,然后计算各SDOF在激励下的响应曲线,取其峰值并结合各小波分量频率即得到冲击响应谱。

    基于应用需求,为研制能适应冲击响应谱为1000g量级(试验参数如图 2)的高可靠红外探测器,本研究重点攻关杜瓦封装中的引线键合加固设计与工艺优化。

    图  2  冲击试验参数
    Figure  2.  Parameter of shock test

    红外探测器在运输、试验和使用中会经历各种振动和热环境,封装杜瓦也同样受到环境的影响。杜瓦内部引线键合一般分为同一水平面的和不同水平面的键合,后者由于引线弧形不对称及受力不平衡,更容易产生过大应力应变甚至断裂的风险。如图 3所示,杜瓦封装内基板与引线环键合时,第一、二焊点间隔距离远且不在同一水平面上,其中,引线水平方向跨距为ΔL、垂直方向跨高为ΔH

    图  3  键合引线示意图
    Figure  3.  Schematic diagram of bonding wire

    图 3中,引线弧形是由劈刀运动轨迹决定的,在键合第一焊点后,劈刀先向上运动高度h1;然后向左运动距离l1;最后向下运动高度h2并键合第二焊点形成最终的引线弧形。其中第一焊点与第二焊点高度差为h1h2,ΔHh1h2,ΔLl1。为了分析键合引线弧形在1000g冲击响应谱试验条件下的应力分布及位移情况,我们固定ΔL为2000 μm并设计了10种ΔH不同的弧形,弧形的ΔL与ΔH满足如下公式:

    $$ \frac{{{X^2}}}{{\Delta {L^2}}} + \frac{{{Z^2}}}{{\Delta {H^2}}} = 1 $$ (12)

    通过引线弧形各点数据建立模型并进行有限元分析,建立的红外探测器模型中,底部法兰面进行固定支撑约束,其余各部件进行绑定约束,仿真的引线材料为30 μm的铂丝,设定1000g冲击响应谱试验条件,分别沿XYZ三轴正方向进行仿真,最终得到3个方向的单轴冲击仿真结果。图 4中ΔH为7000 μm时,Y轴正方向引线位移的仿真结果,最大位移为0.2672 mm。将10根引线弧形的仿真结果整合后得到图 5

    图  4  沿Y轴冲击的弧形位移仿真结果
    Figure  4.  Simulation diagram of loop displacement of impact along Y axis
    图  5  弧形仿真结果:(a)为弧高与位移的关系;(b)为弧高与应力的关系
    Figure  5.  Loop simulation diagram(a) is the relationship between loop height and displacement; (b) is the relationship between loop height and stress

    图 5中结果显示,在1000g冲击响应谱试验条件下,Y轴正方向冲击对弧形的位移与应力影响最大,Z轴正方向的冲击对其影响最小,X轴居中。且随着弧高逐渐增大,弧形应力与位移也逐渐变大。因此为了减小1000g冲击响应谱条件下引线形变及断裂的可能,需要弧高尽可能小。

    此外,在冲击响应谱试验下,键合引线所受力可由以下公式计算得出:

    $$ F=ma $$ (13)
    $$ m=πr^{2}Lρ $$ (14)

    式中:a为引线最大加速度;mrLρ分别为引线的质量、半径、长度和密度。以铂丝为例,已知其密度为21.34 g/cm3,直径30 μm,长度6.5 mm,当冲击最大加速度为1000g时,计算得出铂丝整体受力为9.805×10-5 N,故键合引线自身受力可以忽略不计。

    除了考虑键合引线弧形外,键合引线的材料对键合质量也有直接关系,并影响红外探测器组件长期使用的可靠性和稳定性。红外探测器封装对引线材料的要求是:低电阻的欧姆连接、漏热小、可塑性好、键合处的机械强度高以及键合完成后对杜瓦真空度影响小。常用的引线材料有:金丝、银丝、铂丝、硅铝丝、铝丝和铜丝等,表 1列出了常用引线材料的部分物理参数[13]

    表  1  键合引线部分物理参数[13]
    Table  1.  Partial physical parameters of bonding wire[13]
    Wire materials Average resistivity/(10-8 Ω⋅m) Average thermal conductivity/(W/(m⋅K))
    Au 1.35 311.42
    Ag 1.59 429
    Pt 10.6 71.6
    SiAl 1.52 276.29
    Al 2.7 220
    Cu 0.99 414.10
    下载: 导出CSV 
    | 显示表格

    红外探测器为了获得可以接受的制冷时间,必须相应地降低杜瓦组件的静态热负载。因此红外探测器的引线选择除了考虑键合性能外,还要兼顾引线漏热。

    由以下公式进行理论分析:

    $$ {Q_1} = {I^2}R = {I^2}\rho \frac{L}{\mathit{\Phi }}$$ (15)
    $$ {Q_2} = - \lambda {\mathit{\Phi }} \frac{{{\rm{d}}T}}{{{\rm{d}}L}} $$ (16)

    式中:Q1为引线焦耳热;Q2为引线传导热;IRρλLΦ分别为引线的电流、电阻、电阻率、热导率、长度及横截面积。由式(15)与式(16)可得:

    $$\mathit{d}{Q_1} = \frac{{\rho \lambda {I^2}}}{Q}{\rm{d}}T $$ (17)
    $$ {({Q_2})_{\min }} = I\sqrt {2\int_{{T_i}}^{{T_j}} {\rho (\tau )\lambda (\tau ){\rm{d}}\tau } } $$ (18)
    $$ \frac{L}{\mathit{\Phi }} = \frac{1}{{\sqrt 2 I}}\int_{{T_i}}^{{T_j}} {\frac{{\lambda (\tau )}}{{\sqrt {\int_{{T_i}}^{{T_j}} {\rho (\tau )\lambda (\tau ){\rm{d}}\tau } } }}} {\rm{d}}\tau $$ (19)

    式中:Tj为引线上端温度,Ti为引线冷端温度。当Tj=300 K,Ti=77 K时,得到最小漏热的引线长截比。为减小引线固体传导漏热,常选用热导率小的材料、增加引线长度、减小引线线径,但会使得引线电阻增大导致信号引出及焦耳热耗两方面的问题。通过式(15)~式(19)的理论分析,综合考虑键合引线热导率、电阻率、引线直径、长度等诸多因素,从而选出最佳的键合引线材料及其长截比。

    此外,为避免红外探测器在实际应用过程中发生共振现象导致红外探测器损坏,材料的固有频率则需要被考虑。材料的固有频率计算公式[14]为:

    $$ f = \frac{1}{{2\pi }}\sqrt {\frac{k}{m}} $$ (20)
    $$ K = \frac{F}{\delta } = \frac{1}{{\frac{{{L^3}}}{{48EI}} + \frac{{{H^3}}}{{6EI}} + \frac{{H{L^2}}}{{8GJ}}}} $$ (21)

    式中:f为固有频率;m为质量;K为键合引线刚度;E为弹性模量;G为剪切模量;I为惯性矩;J为极惯性矩;HL为键合引线弧高与弧长。考虑到红外探测器组件振动要求为0~2000 Hz,键合引线固有频率应尽可能避开红外探测器共振频率范围,因此键合引线材料自身的弹性模量、剪切模量、惯性矩、极惯性矩、弧高及弧长等因素也需要被综合考虑。

    通过对键合引线受力分析及综合考虑材料多种特性之后,最终优选30 μm铂丝为键合材料且确定了其键合弧形参数。

    引线键合的可靠性受多种因素影响,如键合表面材质、键合表面状态、引线材料、键合参数及杜瓦整体抗振性能等。在基板、引线环及键合引线材料确定的前提下,引线键合的质量则只与键合表面状态、键合参数和杜瓦整体抗振性能有关。我们将键合表面状态因素设定为A,键合参数因素设定为B,杜瓦整体抗振性能因素为C,则键合引线发生各种断裂等失效的概率为P(ABC)。以珏芯微电子的制冷型红外探测器为例,在过去30个制冷型红外探测器共计900根引线1000g冲击响应谱试验中,存在26根为键合参数不适合导致失效,存在25根因键合表面状态问题导致的失效,存在11根因杜瓦整体抗振性能差导致的引线断裂失效。故ABC各自独立发生的概率分别为P(A)≈0.029,P(B)≈0.028,P(C)≈0.012。P(ABC)为ABC发生的集合,约等于0.069。因此当存在N根键合引线时,不发生引线断裂失效的概率P(N)由以下公式计算得出:

    $$ P(N) = \prod\nolimits_{i = 1}^N {(1 - {P_i}(ABC))} $$ (22)

    N=30时,P(N)≈0.1171。可以看出在1000g冲击响应谱试验条件下,30根引线即单个红外探测器通过试验的概率并不高,即键合工艺仍然有较大的优化空间。在以铂丝作为键合引线材料后,为了进一步提高键合强度,主要采用直接加固和间接加固的方式。直接加固方式包括对键合表面的洁净处理、键合工艺参数的优化以及植球等方式。其中,键合表面洁净处理在一般清洁表面污染方式的基础上增加了等离子清洗工艺;键合工艺参数的优化可通过设计正交试验,取键合三要素键合压力、超声功率、超声时间构成3因素4水平的正交实验,并对结果进行极差分析从而得出最佳的键合工艺参数;植球则是指在第二焊点键合结束后,再对第二焊点进行球焊操作,植球后的引线强度往往比未植球时高。间接加固方式为对杜瓦冷指顶端辅助加固从而对悬臂梁结构进行力学强化,在减少其振动的同时而间接减少键合引线的受力。中国科学院上海技术物理研究所也提出了一种杜瓦冷指顶端辅助加固的力学强化方式[15]

    采用推拉力试验机对工艺优化后的键合引线进行测试,测试速度为500 μm/s,设定负载40g图 6为工艺优化前后键合引线拉力强度值对比。

    图  6  键合引线拉力强度对比
    Figure  6.  The contrast of bonding wire strength

    对引线键合优化后的红外探测器进行1000g冲击试验,试验参数如图 2,加载方向±X、±Y、±Z每向3次。图 7为冲击响应谱(shock response spectrum,SRS)试验样品,图 8为试验流程。

    图  7  冲击响应谱试验样品
    Figure  7.  SRS test samples
    图  8  冲击响应谱试验过程
    Figure  8.  SRS test process

    冲击响应谱试验一般包括图中9个步骤,试验开始前首先调节设备冲击响应谱,使其输出与试验条件一致,接着确认红外探测器试验前状态,然后就可以开始试验。试验时按X、-XY、-YZ、-Z的顺序进行冲击响应谱试验,试验完成后确认探测器的状态。

    试验结束后分析得到:4个红外探测器试验样品经过1000g量级冲击响应谱试验后未发现明显的缺陷,键合引线亦保持正常的电气连接功能。因此,对键合引线受力进行理论分析、综合考虑键合引线材料及工艺优化这一体系措施对于提高键合引线在冲击响应谱试验下的可靠性是有效且可行的。

    本研究通过建立有限元模型对红外探测器杜瓦封装中的键合引线进行模态分析,综合考虑键合材料的物性参数,最终选定了铂丝作为键合材料并确定了其弧形参数。在对引线键合工艺进行优化后得到了符合期望的引线键合质量,且通过了1000g量级冲击响应谱试验。本研究给基于冲击响应谱试验条件下如何提高键合引线可靠性提供了新的思路。然而,该研究仍然有优化的空间:

    1)由于缺少高速摄像设备,对于键合引线在冲击环境下的实际运动轨迹未能捕捉到;

    2)下一步,可通过设备升级及采用多种检测方法来更好地把控键合一致性;

    3)建立多变量系统性的仿真平台,获得更接近真实情况的引线键合仿真数据;

    4)完善键合引线材料数据库,做到针对不同情况快速筛选合适的引线材料。

  • 图  1   单极势垒型红外探测器:(a)~(e)分别为nBn器件的能带结构[28]、Arrhenius曲线特性[28]、暗电流抑制特性[30]、体能带结构与表面能带结构对比[31]和表面漏电流通道的阻挡[31];(f) nBn焦平面器件阵列结构[32]

    Figure  1.   Unipolar barrier infrared detector: (a)-(e) are the band structure[28], Arrhenius curve characteristics[28], dark current suppression characteristics[30], comparison of bulk band structure and surface band structure[31], and blocking of surface leakage current channel of nBn device[31], respectively; (f) nBn focal plane array structure[32]

    图  2   HgCdTe势垒型探测器:(a)和(b)分别为nBn探测器的能带结构和暗电流的Arrhenius曲线[39-40];(c)和(d)分别为互补势垒探测器NBνN的能带结构和暗电流的Arrhenius曲线[41];(e)和(f)分别为p型掺杂势垒的能带结构和J-V特性曲线[48]

    Figure  2.   HgCdTe barrier detector: (a) and (b) are the band structure and Arrhenius curve of dark current of nBn detector, respectively[39-40]; (c) and (d) are the band structure and the Arrhenius curve of dark current of the complementary barrier detector NBνN, respectively[41]; (e) and (f) are the band structure and J-V characteristic curves of p-type doping barrier, respectively[48]

    图  3   HgCdTe势垒型探测器降低ΔEv的方法:(a)和(b)分别为HgTe/CdTe能带对准示意图和超晶格势垒能带结构图[55];(c)和(d)分别为势垒层两端的x组分梯度和n型/p型掺杂梯度[56];(e)和(f)分别为势垒层两端δ掺杂调控结构和能带结构[57]

    Figure  3.   The solutions of reduce ΔEv of HgCdTe barrier detector: (a) and (b) are HgT/CdTe band alignment diagram and superlattice barrier band diagram, respectively[55]; (c) and (d) are Cd molar fraction gradient and acceptor/donor doping gradient at both ends of the barrier layer, respectively[56]; (e) and (f) are δ-doping regulatory structures and band structures at both ends of the barrier layer, respectively[57]

    图  4   HgCdTe P+-π-N+单元红外探测器:(a)和(b)为非平衡工作器件结构及暗电流曲线[64];(c)-(f)分别为零偏及反偏时的能带结构[71]、反偏时的频率响应特性[70]、多层异质单元器件结构和器件封装形式[52]

    Figure  4.   HgCdTe P+-π-N+ prototype infrared detector: (a) and (b) are the structure and dark current curve of non-equilibrium operating device; (c)-(f) are the band structures with and without reverse bias[70], the frequency response characteristics with reverse bias[70], the structure and packaging form of multilayer heterojunction prototype devices[52], respectively

    图  5   P/p(π)/N结构焦平面红外探测器:(a)和(b)分别为P+-p-N+探测器的像元结构[17]和掺杂以及组分变化曲线[82];(c)-(f)分别为P+-p-N+焦平面探测器的焦平面阵列结构[17]、NETD曲线[85]、210 K时的成像效果图[85]和探测器组件产品图[91]

    Figure  5.   Focal plane array infrared detectors with P/p(π)/N structure: (a) and (b) are the pixel structure[17], doping and composition change curves of P+-p-N+ detectors[82], respectively; (c)-(f) are FPAs structure[17], calculated and measured NETD[85], hawk image at 210 K[85] and component product of P+-p-N+ FPAs detector[91], respectively

    图  6   P-ν-N结构焦平面红外探测器:(a)和(b)分别为吸收层Auger抑制高于“07规则”和完全耗尽时的能带结构图[94];(c) P-ν-N焦平面结构及其特征[63];(d) ν吸收区的暗电流密度随着多子(电子)浓度降低而降低并直达BLIP[63];(e) ν吸收层掺杂水平对全耗尽时所需反向偏压的影响[13];(f)不同波长时全耗尽HgCdTe P-ν-N焦平面探测器工作温度的提升[97]

    Figure  6.   Focal plane infrared detector of P-ν-N structure: (a) and (b) are the band structures of absorption layer with Auger suppression higher than "07 rule" and complete depletion, respectively[94]; (c) P-ν-N focal plane array structure and its characteristics[63]; (d) The dark current density in the absorption region decreases with the decrease of the majority carrier (electron) concentration and reaches the background limit infrared performance[63]; (e) The effect of doping level of the absorption layer on required reverse bias voltage when full depletion[13]; (f) Increases of operating temperature of full depletion HgCdTe P-ν-N focal plane detector with different wavelength[97]

    图  7   势垒阻挡型和非平衡工作HgCdTe红外探测器的进展

    Figure  7.   Progresses in barrier detector and non-equilibrium operating HgCdTe infrared detectors

    表  1   势垒阻挡型HgCdTe红外探测器的结构及性能对比

    Table  1   Comparisons of structure and performance of barrier blocking HgCdTe infrared detectors

    Device structure λcut-off/
    μm
    T/K Dark current
    Vbias=−0.2 V
    (A/cm2
    Other
    performance
    Research institution Year Ref.
    nBnn 5.7 77 −0.54@180 K and −0.8 V Qη=66%
    Vturn on=−0.5~−1.0 V
    UMich, USA 2011 [39]
    nBnnN 5.2 77 3.74×10-6@−0.5 V Vturn on=−0.2 V 2012 [41]
    $ {\mathrm{p}}^{+}{\mathrm{B}}_{\mathrm{p}}{\mathrm{n}\mathrm{N}}^{+} $ 3.6 230 (2~3)×10-4 Ri=2 A/W MUT/Vigo, Poland 2014 [47]
    $ {\mathrm{p}}^{+}{\mathrm{B}}_{\mathrm{p}}{\mathrm{p}\mathrm{N}}^{+} $
    $ {\mathrm{n}\mathrm{B}}_{\mathrm{p}}\mathrm{p}{\mathrm{N}}^{+} $ 3.6 230 (2~3)×10-2 D*=2.0×1010Jones MUT/Vigo, Poland 2015 [50]
    $ {\mathrm{n}\mathrm{B}}_{\mathrm{p}}\mathrm{n}{\mathrm{N}}^{+} $ (7~60)×10-2 D*=1.0×1010 Jones
    $ {{\mathrm{n}}^{+}\mathrm{B}}_{\mathrm{p}}\mathrm{p}{\mathrm{N}}^{+} $ (1~3)×10-1 D*=8.0×109 Jones
    $ {{\mathrm{n}}^{+}\mathrm{B}}_{\mathrm{p}}\mathrm{n}{\mathrm{N}}^{+} $ > 1.0 D*=1.0×109 Jones
    $ {\mathrm{P}\mathrm{B}}_{\mathrm{p}}\mathrm{\pi }{\mathrm{n}}^{+} $ 9.0 77 (3~4)×10-4 - MUDT, China 2016 [58]
    $ {\mathrm{p}}^{+}{\mathrm{B}}_{\mathrm{p}}{\mathrm{n}\mathrm{N}}^{+} $ 6.0 230 9×10-2 - MUT, Poland 2016 [26]
    $ {\mathrm{p}}^{+}{\mathrm{B}}_{\mathrm{p}}{\mathrm{p}\mathrm{N}}^{+} $ 0.1 -
    $ {\mathrm{n}}^{+}{\mathrm{p}}^{+}{\mathrm{B}}_{\mathrm{p}}\pi {\mathrm{N}}^{+} $ 9.0 230 (8~9)@77 K - MUT/Vigo, Poland 2016 [59]
    nBnn 7.5 180 ~3.0×10-4 D*=1.64×109 Jones SITP, CAS, China/MUT, Poland 2020 [60]
    下载: 导出CSV

    表  2   HgCdTe多层异质结快速响应单元红外探测器性能对比

    Table  2   Comparisons of performances of HgCdTe multilayer heterojunction fast response infrared detectors

    Device structure λcut-off
    /μm
    T/K Dark current/(A/cm2) Other performances Year Ref.
    P-π-N 7.5 230 0.4-2.0@−0.8 V Ri=6 A/W 2013 [72]
    n+-p+-P+-π-N+ 10.6 230 0.052@−0.2 V - 2016 [77]
    n+-P+-π-N+ 10.6 230 0.1-0.2@−0.7 V - 2017 [79]
    3-20@unbiased -
    n+-P+-p-N+ 10.6 230 0.1-0.2@−0.7 V - 2017 [70]
    4-8@unbiased -
    < 1@unbiased, optimal D*≈109 Jones
    n+-P+-p-N+ 10.6 300 ≤1@unbiased, RS+=0 Ω D*≈109 Jones 2017 [80]
    ~2.3@unbiased, RS+=5-10 Ω -
    N+-p-P+ 11.6 200 0.1-0.2@unbiased, NA/ni=10, tabs=1 μm Ri=~2 A/W 2018 [74]
    下载: 导出CSV

    表  3   HgCdTe多层异质结焦平面红外探测器性能对比

    Table  3   Comparison of performances of HgCdTe multilayer heterojunction FPAs infrared detectors

    Device structure FPA
    format
    λcut-off/
    μm
    NETD/mK Other performance Research institution Year Ref.
    P+-P-π-N-N+ Variable mesa 320×256
    (30 μm)
    4@150 K 12@180 K - BAE/
    QinetiQ, UK
    2003 [84]
    Eagle 640×512
    (24 μm)
    9.6@80 K 20@80 K Operability
    ≥99%
    Selex, UK 2007 [82]
    P-p-N
    (Hawk)
    640×512
    (16 μm)
    8.0~9.4 28@80 K Operability =99.6% 2009 [88]
    P-p-N
    (Hawk)
    640×512
    (16 μm)
    5.5@80 K ~16@160 K
    ~32@185 K
    - 2011 [85]
    P-p-N
    (Test array)
    - - ~18@180 K - 2012 [90]
    P+-p-N+ (SuperHawk) 1280×1024
    (8 μm)
    - ~24@140 K
    ~28@ 150 K
    ~52@ 160 K
    Operability
    ≥99%
    2016 [92]
    P-ν-N 128×128
    1280×480
    640×512
    5.9@250 K
    10.2@78 K
    - MWIR HOT: 250 K
    LWIR HOT:
    160 K
    TIS, USA 2018
    2020
    [97]
    [94]
    下载: 导出CSV
  • [1] 宋林伟, 孔金丞, 李东升, 等. 金掺杂碲镉汞红外探测材料及器件技术[J]. 红外技术, 2021, 43(2): 97-103. http://hwjs.nvir.cn/article/id/587d68b6-af54-476a-b0b8-5a5e4ef674fd

    SONG Linwei, KONG Jincheng, LI Dongsheng, et al. Au-doped HgCdTe infrared material and device technology[J]. Infrared Technology, 2021, 43(2): 97-103. http://hwjs.nvir.cn/article/id/587d68b6-af54-476a-b0b8-5a5e4ef674fd

    [2] 覃钢, 吉凤强, 夏丽昆, 等. 碲镉汞高工作温度红外探测器[J]. 红外与激光工程, 2021, 50(4): 20200328. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202104003.htm

    QIN Gang, JI Fengqiang, XIA Likun, et al. HgCdTe high operation temperature infrared detectors[J]. Infrared and Laser Engineering, 2021, 50(4): 20200328. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202104003.htm

    [3] 覃钢, 夏菲, 周笑峰, 等. 基于nBn势垒阻挡结构的碲镉汞高温器件[J]. 红外技术, 2018, 40(9): 853-862. http://hwjs.nvir.cn/article/id/hwjs201809005

    QIN Gang, XIA Fei, ZHOU Xiaofeng, et al. HgCdTe HOT infrared devices based on nBn barrier impeded structure[J]. Infrared Technology, 2018, 40(9): 853-862. http://hwjs.nvir.cn/article/id/hwjs201809005

    [4]

    Akhavan N D, Jolley G, Umana-Membreno G A, et al. Performance modeling of bandgap engineered HgCdTe-based nBn infrared detectors[J]. IEEE Transactions on Electron Devices, 2014, 61(11): 3691-3698. DOI: 10.1109/TED.2014.2359212

    [5]

    Klipstein P. "XBn" barrier photodetectors for high sensitivity and high operating temperature infrared sensors[C]//Proc. of SPIE, 2008, 6940: 69402U.

    [6]

    Kopytko M, Keblowski A, Gawron W, et al. MOCVD grown HgCdTe barrier detectors for MWIR high-operating temperature operation[J]. Optical Engineering, 2015, 54(10): 105105. DOI: 10.1117/1.OE.54.10.105105

    [7]

    Klipstein P, Klin O, Grossman S, et al. XBn barrier detectors for high operating temperatures[C]// Proc. of SPIE, 2010, 7608: 76081V.

    [8]

    Martyniuk P, Rogalski A. Theoretical modelling of MWIR thermoelectrically cooled nBn HgCdTe detector[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61(1): 211-220. DOI: 10.2478/bpasts-2013-0020

    [9]

    YE Z H, CHEN Y Y, ZHANG P, et al. Modeling of LWIR nBn HgCdTe photodetector[C]// Proc. of SPIE, 2014, 9070: 90701L.

    [10] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 7版, 北京: 电子工业出版社, 2008.

    LIU Enke, ZHU Bingsheng, LUO Jinsheng. The Physics of Semiconductors[M]. 7th Edition, Beijing: Publishing House of Electronics Industry, 2009.

    [11] 王忆锋, 唐利斌. 碲镉汞近年来的研究进展[J]. 红外技术, 2009, 31(8): 435-442. DOI: 10.3969/j.issn.1001-8891.2009.08.001

    WANG Yifeng, TANG Libin. Developments of mercury cadmium telluride in recent years[J]. Infrared Technology, 2009, 31(8): 435-442. DOI: 10.3969/j.issn.1001-8891.2009.08.001

    [12] 丁瑞军, 杨建荣, 何力, 等. 碲镉汞红外焦平面器件技术进展[J]. 红外与激光工程, 2020, 49(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001010.htm

    DING Ruijun, YANG Jianrong, HE Li, et al. Development of technologies for HgCdTe IRFPA[J]. Infrared and Laser Engineering, 2020, 49(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001010.htm

    [13]

    Rogalski A, Kopytko M, Martyniuk P, et al. Comparison of performance limits of the HOT HgCdTe photodiodes with colloidal quantum dot infrared detectors[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2020, 68(4): 845-855.

    [14] 杨建荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012.

    YANG Jianrong. Physics and Technology of HgCdTe Materials[M]. Beijing: National Defense Industry Press, 2012.

    [15]

    Lutz H, Breiter R, Figgemeier H, et al. Improved high operating temperature MCT MWIR modules[C]// Proc. of SPIE, 2014, 9070: 90701D.

    [16] 周连军, 韩福忠, 白丕绩, 等. 高温碲镉汞中波红外探测器的国内外进展[J]. 红外技术, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002

    ZHOU Lianjun, HAN Fuzhong, BAI Piji, et al. Review of HOT MW infrared detector using MCT technology[J]. Infrared Technology, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002

    [17]

    Martyniuk P, Rogalski A. HOT infrared photodetectors[J]. Opto-Electronics Review, 2013, 21(2): 1955.

    [18]

    Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature[J]. Applied Physics Letters, 2006, 89(15): 151109. DOI: 10.1063/1.2360235

    [19]

    Klipstein P, Aronov D, Berkowicz E, et al. Reducing the cooling requirements of mid-wave IR detector arrays[J]. SPIE Newsroom, 2011, Doi: 10.1117/2.1201111.003919.

    [20]

    LEI L, LI L, YEH, et al. Long wavelength interband cascade infrared photodetectors operating at high temperatures[J]. Journal of Applied Physics, 2016, 120(19): 193102. DOI: 10.1063/1.4967915

    [21]

    Rabiee Golgir H, Ghandiparsi S, Devine E P, et al. Ultra-thin super absorbing photon trapping materials for high-performance infrared detection[C]// Proc. of SPIE, 2019, 11002: 110020T.

    [22]

    Ashley T, Elliott C T, White A M. Non-equilibrium devices for infrared detection[C]// Proc. of SPIE, 1985, 572: 123.

    [23]

    Kopytko M, Kębłowski A, Gawron W, et al. High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD[J]. Opto-Electronics Review, 2013, 21(4): 151109.

    [24]

    White A. Infrared Detectors [P]. U. S. : Patent 4, 679, 063, [1983-09-22].

    [25]

    Klipstein P. Depletion-less Photodiode with Suppressed Dark Current and Method for Producing the Same [P]. U. S. : Patent 7, 795, 640 B2, [2004-06-28].

    [26]

    Kopytko M, Rogalski A. HgCdTe barrier infrared detectors[J]. Progress in Quantum Electronics, 2016, 47(12): 1-18.

    [27]

    Martyniuk P, Kopytko M, Rogalski A. Barrier infrared detectors[J]. Opto-Electronics Review, 2014, 22(2): 1624.

    [28]

    Rogalski A, Martyniuk P. Mid-wavelength Infrared nBn for HOT Detectors[J]. Journal of Electronic Materials, 2014, 43(8): 2963-2969.

    [29]

    Pedrazzani J R, Maimon S, Wicks G W. Use of nBn structures to suppress surface leakage currents in unpassivated InAs infrared photodetectors[J]. Applied Physics Letters, 2008, 44(25): 1487.

    [30]

    Savich G R, Pedrazzani J R, Sidor D E, et al. Benefits and limitations of unipolar barriers in infrared photodetectors[J]. Infrared Physics & Technology, 2013, 59: 152-155.

    [31]

    Sidor D E, Savich G R, Wicks G W. Surface leakage mechanisms in III-V infrared barrier detectors[J]. Journal of Electronic Materials, 2016, 45(9): 4663-4667.

    [32]

    Rogalski A. Next decade in infrared detectors[C]// Proc. of SPIE, 2017, 10433: 104330L.

    [33]

    Savich G R, Pedrazzani J R, Maimon S, et al. Use of epitaxial unipolar barriers to block surface leakage currents in photodetectors[J]. Physica Status Solidi C, 2010, 7(10): 2540-2543.

    [34]

    Kopytko M, Gomółka E, Michalczewski K, et al. Investigation of surface leakage current in MWIR HgCdTe and InAsSb barrier detectors[J]. Semiconductor Science and Technology, 2018, 33(12): 125010.

    [35]

    DU X, Savich G R, Marozas B T, et al. Suppression of lateral diffusion and surface leakage currents in nBn photodetectors using an inverted design[J]. Journal of Electronic Materials, 2018, 47(2): 1038-1044.

    [36]

    Martyniuk P, Antoszewski J, Martyniuk M, et al. New concepts in infrared photodetector designs[J]. Applied Physics Reviews, 2014, 1(4): 41102.

    [37]

    Kopytko M, Jóźwikowski K. Numerical analysis of current–voltage characteristics of LWIR nBn and p-on-n HgCdTe photodetectors[J]. Journal of Electronic Materials, 2013, 42(11): 3211-3216.

    [38] 田震, 肖昕, 宋淑芳, 等. 低暗电流高温工作碲镉汞红外探测器制备技术[J]. 激光与红外, 2019, 49(7): 861-865. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201907014.htm

    TIAN Zhen, XIAO Xin, SONG Shufang, et al. Low-dark current HOT infrared focal plane arrays using MCT technology[J]. Laser & Infrared, 2019, 49(7): 861-865. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201907014.htm

    [39]

    Itsuno A M, Phillips J D, Velicu S. Mid-wave infrared HgCdTe nBn photodetector[J]. Applied Physics Letters, 2012, 100(16): 161102.

    [40]

    Itsuno A M, Phillips J D, Velicu S. Design and modeling of HgCdTe nBn detectors[J]. Journal of Electronic Materials, 2011, 40(8): 1624-1629.

    [41]

    Itsuno A M, Phillips J D, Velicu S. Design of an auger-suppressed unipolar HgCdTe NBνN photodetector[J]. Journal of Electronic Materials, 2012, 41(10): 2886-2892.

    [42]

    Itsuno A M, Phillips J D, Gilmore A S, et al. Calculated performance of an auger-suppressed unipolar HgCdTe photodetector for high temperature operation[C]// Proc. of SPIE, 2011, 8155: 81550J.

    [43]

    Ting D Z-Y, Hill C J, Soibel A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector[J]. Applied Physics Letters, 2009, 95(2): 23508.

    [44]

    Martyniuk P, Rogalski A. Modelling of MWIR HgCdTe complementary barrier HOT detector[J]. Solid-State Electronics, 2013, 80: 96-104.

    [45]

    Martyniuk P, Gawron W, Rogalski A. Theoretical modeling of HOT HgCdTe barrier detectors for the mid-wave infrared range[J]. Journal of Electronic Materials, 2013, 42(11): 3309-3319.

    [46]

    Kopytko M, Jozwikowski K. Generation-recombination effect in MWIR HgCdTe barrier detectors for high-temperature operation[J]. IEEE Transactions on Electron Devices, 2015, 62(7): 2278-2284.

    [47]

    Kopytko M, Keblowski A, Gawron W, et al. MOCVD grown HgCdTe barrier structures for HOT conditions[J]. IEEE Transactions on Electron Devices, 2014, 61(11): 3803-3807.

    [48]

    Kopytko M. Design and modelling of high-operating temperature MWIR HgCdTe nBn detector with n-and p-type barriers[J]. Infrared Physics & Technology, 2014, 64(15): 47-55.

    [49]

    Klem J F, Kim J K, Cich M J, et al. Comparison of nBn and nBp mid-wave barrier infrared photodetectors[C]// Proc. of SPIE, 2010, 7608: 76081P.

    [50]

    Kopytko M, Kębłowski A, Gawron W, et al. Different cap-barrier design for MOCVD grown HOT HgCdTe barrier detectors[J]. Opto-Electronics Review, 2015, 23(2): 143-148.

    [51]

    Kopytko M, Kębłowski A, Gawron W, et al. MOCVD grown HgCdTe p+BnN+ barrier detector for MWIR HOT operation[C]// Proc. of SPIE, 2015, 9451: 945117.

    [52]

    Gawron W, Sobieski J, Manyk T, et al. MOCVD grown HgCdTe heterostructures for medium wave infrared detectors[J]. Coatings, 2021, 11(5): 611.

    [53]

    Uzgur F, Kocaman S. Barrier engineering for HgCdTe unipolar detectors on alternative substrates[J]. Infrared Physics & Technology, 2019, 97(3): 123-128.

    [54]

    Kopytko M, Jóźwikowski K, Rogalski A. Fundamental limits of MWIR HgCdTe barrier detectors operating under non-equilibrium mode[J]. Solid-State Electronics, 2014, 100(1): 20-26.

    [55]

    Kopytko M, Wróbel J, Jóźwikowski K, et al. Engineering the bandgap of unipolar HgCdTe-based nBn infrared photodetectors[J]. Journal of Electronic Materials, 2015, 44(1): 158-166.

    [56]

    Akhavan N D, Umana-Membreno G A, Jolley G, et al. A method of removing the valence band discontinuity in HgCdTe-based nBn detectors[J]. Applied Physics Letters, 2014, 105(12): 121110.

    [57]

    Akhavan N D, Umana-Membreno G A, Gu R, et al. Delta doping in HgCdTe-Based unipolar barrier photodetectors[J]. IEEE Transactions on Electron Devices, 2018, 65(10): 4340-4345.

    [58]

    QIU W C, JIANG T, CHENG X A. A bandgap-engineered HgCdTe PBπn long-wavelength infrared detector[J]. Journal of Applied Physics, 2015, 118(12): 124504.

    [59]

    Kopytko M, Kębłowski A, Gawron W, et al. LWIR HgCdTe barrier photodiode with auger-suppression[J]. Semiconductor Science and Technology, 2016, 31(3): 35025.

    [60]

    HE J, WANG P, LI Q, et al. Enhanced performance of HgCdTe long-wavelength infrared photodetectors with nBn design[J]. IEEE Transactions on Electron Devices, 2020, 67(5): 2001-2007.

    [61] 安东尼⋅罗格尔斯基. 红外探测器[M]. 2版, 北京: 机械工业出版社, 2014.

    Rogalski Antoni. Infrared Detectors [M]. Second Edition, Beijing: China Machine Press, 2014.

    [62]

    Rogalski A, Martyniuk P, Kopytko M, et al. Trends in performance limits of the HOT infrared photodetectors[J]. Applied Sciences, 2021, 11(2): 501.

    [63]

    Lee D, Carmody M, Piquette E, et al. High-operating temperature HgCdTe: a vision for the near future[J]. Journal of Electronic Materials, 2016, 45(9): 4587-4595.

    [64]

    Capper P, Garland J. Mercury Cadmium Telluride: Growth, Properties, and Applications[M]. Oxford: Wiley-Blackwell, 2011: 474-476.

    [65]

    Piotrowski A, Kłos K, Gawron W, et al. Uncooled or minimally cooled 10 μm photodetectors with subnanosecond response time[C]// Proc. of SPIE, 2007, 6542: 65421B.

    [66]

    Madejczyk P, Gawron W, Kębłowski A, et al. Response time study in unbiased long wavelength HgCdTe detectors[J]. Optical Engineering, 2017, 56(8): 087103.1-087103.8.

    [67]

    Pawluczyk J, Piotrowski J, Pusz W, et al. Complex behavior of time response of HgCdTe HOT photodetectors[J]. Journal of Electronic Materials, 2015, 44(9): 3163-3173.

    [68]

    Grodecki K, Martyniuk P, Kopytko M, et al. Fast response hot (1 1 1) HGCDTE MWIR Detectors[J]. Metrology and Measurement Systems, 2017, 24(3): 509-514.

    [69]

    Piotrowski A, Madejczyk P, Gawron W, et al. Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors[J]. Infrared Physics & Technology, 2007, 49(3): 173-182.

    [70]

    Kopytko M, Kębłowski A, Madejczyk P, et al. Optimization of a HOT LWIR HgCdTe photodiode for fast response and high detectivity in zero-bias operation mode[J]. Journal of Electronic Materials, 2017, 46(10): 6045-6055.

    [71]

    Madejczyk P, Gawron W, Martyniuk P, et al. Engineering steps for optimizing high temperature LWIR HgCdTe photodiodes[J]. Infrared Physics & Technology, 2017, 81(10): 276-281.

    [72]

    Kopytko M, Jóźwikowski K, Madejczyk P, et al. Analysis of the response time in high-temperature LWIR HgCdTe photodiodes operating in non-equilibrium mode[J]. Infrared Physics & Technology, 2013, 61: 162-166.

    [73]

    Piotrowski J F, Rogalski A. High-Operating-Temperature Infrared Photodetectors[M]. Bellingham, Washington: SPIE Press, 2007.

    [74]

    Kopytko M, Martyniuk P, Madejczyk P, et al. High frequency response of LWIR HgCdTe photodiodes operated under zero-bias mode[J]. Optical and Quantum Electronics, 2018, 50(2): 451. DOI: 10.1007/s11082-018-1336-0

    [75]

    Madejczyk P, Gawron W, Kębłowski A, et al. Higher operating temperature IR detectors of the MOCVD grown HgCdTe heterostructures[J]. Journal of Electronic Materials, 2020, 49(11): 6908-6917. https://www.sciencedirect.com/science/article/pii/S0079672716000112

    [76]

    Martyniuk P, Gawron W, Stępień D, et al. Status of long-wave Auger suppressed HgCdTe detectors operating>200 K[J]. Opto-Electronics Review, 2015, 23(4): 151109. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-b54920e1-6686-4d03-a0e5-b252bcf63fc2

    [77]

    Martyniuk P, Kopytko M, Keblowski A, et al. Interface influence on the long-wave Auger suppressed multilayer N+π P+p+n+ HgCdTe HOT detector performance[J]. IEEE Sensors Journal, 2017, 17(3): 674-678.

    [78]

    Madejczyk P, Gawron W, Martyniuk P, et al. MOCVD grown HgCdTe device structure for ambient temperature LWIR detectors[J]. Semiconductor Science and Technology, 2013, 28(10): 105017. DOI: 10.2478/s11772-014-0186-y

    [79]

    Madejczyk P, Gawron W, Kębłowski A, et al. Response time improvement of LWIR HOT MCT detectors[C]// Proc. of SPIE, 2017, 10177: 1017719.

    [80]

    Martyniuk P, Kopytko M, Madejczyk P, et al. Theoretical simulation of a room temperature HgCdTe long-wave detector for fast response−operating under zero bias conditions[J]. Metrology and Measurement Systems, 2017, 24(4): 729-738.

    [81]

    Kopytko M, Sobieski J, Gawron W, et al. Minority carrier lifetime in HgCdTe (1 0 0) epilayers and their potential application to background radiation limited MWIR photodiodes[J]. Semiconductor Science and Technology, 2021, 36(5): 55003.

    [82]

    Hipwood L G, Jones C L, Walker D, et al. Affordable high-performance LW IRFPAs made from HgCdTe grown by MOVPE[C]// Proc. of SPIE, 2007, 6542: 65420I.

    [83]

    Jones C L, Hipwood L G, Shaw C J, et al. High-performance MW and LW IRFPAs made from HgCdTe grown by MOVPE[C]// Proc. of SPIE, 2006, 6206: 620610.

    [84]

    Hipwood L G, Gordon N T, Jones C L, et al. 4 μm cut-off MOVPE Hg1-x CdxTe hybrid arrays with near BLIP performance at 180 K[C]// Proc. of SPIE, 2003, 5074: 185.

    [85]

    Knowles P, Hipwood L, Pillans L, et al. MCT FPAs at high operating temperatures[C]//Proc. of SPIE, 2011, 8185: 818505.

    [86]

    Gordon N T, Lees D J, Bowen G, et al. HgCdTe detectors operating above 200 K[J]. Journal of Electronic Materials, 2006, 35(6): 1140-1144. DOI: 10.1007/s11664-006-0233-7

    [87]

    Bowen G J, Blenkinsop I D, Catchpole R, et al. HOTEYE: a novel thermal camera using higher operating temperature infrared detectors[C]// Proc. of SPIE, 2005, 5783: 392.

    [88]

    Hipwood L G, Jones C L, Price J, et al. LW Hawk: a 16 μm pitch full-TV LW IRFPA made from HgCdTe grown by MOVPE[C]// Proc. of SPIE, 2009, 7298: 729820.

    [89]

    Abbott P, Thorne P M, Arthurs C P. Latest detector developments with HgCdTe grown by MOVPE on GaAs substrates[C]// Proc. of SPIE, 2011, 8012: 801236.

    [90]

    Knowles P, Hipwood L, Shorrocks N, et al. Mercury cadmium telluride detectors achieve high operating temperatures[J]. SPIE Newsroom, 2012. Doi: 10.1117/2.1201211.004535.

    [91]

    McEwen R K, Jeckells D, Bains S, et al. Developments in reduced pixel geometries with MOVPE grown MCT arrays[C]// Proc. of SPIE, 2015, 9451: 94512D.

    [92]

    Jeckells D, McEwen R K, Bains S, et al. Further developments of 8 μm pitch MCT pixels at Finmeccanica (formerly Selex ES)[C]// Proc. of SPIE, 2016, 9819: 98191X.

    [93]

    Kinch M A, Wan C-F, Schaake H, et al. Universal 1/f noise model for reverse biased diodes[J]. Applied Physics Letters, 2009, 94(19): 193508.

    [94]

    Lee D L, Dreiske P, Ellsworth J, et al. Law 19: the ultimate photodiode performance metric[C]// Proc. of SPIE, 2020, 11407: 114070X.

    [95] 孔金丞, 李艳辉, 杨春章, 等. 昆明物理研究所分子束外延碲镉汞薄膜技术进展[J]. 人工晶体学报, 2020, 49(12): 2221-2229. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT202012002.htm

    KONG Jincheng, LI Yanhui, YANG Chunzhang, et al. Progress in MBE Growth of HgCdTe at Kunming Institute of Physics[J]. Journal of Synthetic Crystals, 2020, 49(12): 2221-2229. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT202012002.htm

    [96]

    Knowles P, Hipwood L, Shorrocks N, et al. Status of IR detectors for high operating temperature produced by MOVPE growth of MCT on GaAs substrates[C]// Proc. of SPIE, 2012, 8541: 854108.

    [97]

    Jerram P, Beletic J. Teledyne's high performance infrared detectors for Space missions[C]// Proc. of SPIE, 2018, 11180: 111803D-2.

  • 期刊类型引用(4)

    1. 党宁,李世峰,于坤義. 基于多尺度伸缩卷积与注意力机制的光伏组件缺陷分割算法. 电子技术应用. 2025(04): 66-71 . 百度学术
    2. 黄志海,邓耀华,吴光栋. IC器件表面缺陷多光谱图像特征融合检测方法. 仪器仪表学报. 2024(09): 24-33 . 百度学术
    3. 韩自强,岳明凯,张骢,高棋. 基于孪生网络的无人机目标多模态融合检测. 红外技术. 2023(07): 739-745 . 本站查看
    4. 骆元鹏,付江缺,李双江,李红明,张奇,张文成. 基于机器学习算法的光伏组串故障诊断技术研究. 电力大数据. 2023(10): 34-41 . 百度学术

    其他类型引用(2)

图(7)  /  表(3)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  87
  • PDF下载量:  156
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-08-29
  • 刊出日期:  2022-09-19

目录

/

返回文章
返回