机载平台红外探测设备减振技术

叶宗民, 李卓

叶宗民, 李卓. 机载平台红外探测设备减振技术[J]. 红外技术, 2020, 42(12): 1151-1158.
引用本文: 叶宗民, 李卓. 机载平台红外探测设备减振技术[J]. 红外技术, 2020, 42(12): 1151-1158.
YE Zongmin, LI Zhuo. Vibration Reduction of Infrared Detection Equipments on Airborne Platform[J]. Infrared Technology , 2020, 42(12): 1151-1158.
Citation: YE Zongmin, LI Zhuo. Vibration Reduction of Infrared Detection Equipments on Airborne Platform[J]. Infrared Technology , 2020, 42(12): 1151-1158.

机载平台红外探测设备减振技术

详细信息
    作者简介:

    叶宗民(1982-),男,硕士研究生,江苏溧水人,研究方向为光学目标特性测试与研究。E-mail:87757923@qq.com

  • 中图分类号: TP391.9

Vibration Reduction of Infrared Detection Equipments on Airborne Platform

  • 摘要: 红外成像测量设备装载在飞机平台上测量地面目标,首先要解决的问题就是平台抖动及环境变化对设备稳定跟踪和成像清晰度的影响。本文针对机载平台抖动对设备跟踪测量的影响,采用被动隔离加主动陀螺稳定控制的技术,通过被动减振器隔离高频扰动,框架伺服系统抑制低频扰动,确保设备稳定跟踪、清晰成像。针对地面与空中环境温度变化对红外光学系统的影响,在光学镜头的设计中采用无热化补偿措施和调焦量补偿控制,确保设备清晰成像。通过仿真计算和外场测量证明,本文研究的减振措施合理有效,采用该措施研制的设备跟踪稳定、成像清晰,能够满足不同平台的挂飞测量任务。
    Abstract: Airborne infrared measurement systems are mounted on aircraft to track and measure the infrared characteristics of the ground target. The impact of platform jitter and environmental change must be addressed to achieve stable tracking and measurement accuracy. To this end, the technology of passive isolation and active gyroscopic stability control was used in this study to examine the influence of airborne platform jitter. To ensure stable tracking and imaging, the high-frequency disturbances were isolated through a passive shock absorber, and the low-frequency disturbances were suppressed through a frame servo system. Non-thermalization compensation calculation and focusing compensation control were adopted in the design of the optical lens to ensure clear imaging of the equipment and thus study the influence of the temperature change of the ground and air environment on the infrared optical system. Simulation calculations and field measurement demonstrated that these vibration reduction measures are reasonable and effective. The equipment thus developed is stable in tracking and clear in imaging. Therefore, it is suitable for realizing hanging flight measurement on different platforms.
  • 图  1   减振器安装示意图

    Figure  1.   Schematic diagram of shock absorber installation

    图  2   吊舱二级减振原理图

    Figure  2.   Schematic diagram of two-stage damping of the pod

    图  3   金属橡胶内减振器结构图

    Figure  3.   Structural diagram of metal rubber inner shock absorber

    图  4   稳定跟踪平台原理框图

    Figure  4.   Principle block diagram of tracking platform

    图  5   吊舱惯性稳定控制示意图

    Figure  5.   Schematic diagram of the inertial stability control of the pod

    图  6   中波红外光学系统光路图

    Figure  6.   Optical path diagram of medium-wave infrared optical system

    图  7   长波红外光学系统光路图

    Figure  7.   Optical path diagram of long-wave infrared optical system

    图  8   光学镜片减振措施示意图

    Figure  8.   Schematic diagram of optical lens shock absorption measures

    图  9   红外光学系统短焦端调制传递函数曲线

    Figure  9.   Transfer function curve of short focal end modulation in infrared optical system

    图  10   红外光学系统短焦端场曲和畸变曲线

    Figure  10.   Field curves and distortion curves at short focal ends in infrared optical systems

    图  11   红外光学系统长焦端调制传递函数曲线

    Figure  11.   Modulation transfer function curves at the telephoto end of the infrared optical system

    图  12   红外光学系统长焦端场曲和畸变曲线

    Figure  12.   Field curvature and distortion curves of the focal end of the in infrared optical systems

    图  13   实际成像效果图

    Figure  13.   Actual testing images

    图  14   10°/s, 0.5Hz速率干扰隔离曲线图

    Figure  14.   Interference isolation graph at 10°/s, 0.5 Hz

    图  15   系统动态跟踪精度

    Figure  15.   System dynamic tracking accuracy

    表  1   试验条件参数表

    Table  1   Test condition parameters

    Vibration Impact
    Vibration conditions Sine sweep frequency Impact waveform Half-sine wave
    Frequency range 20 -500Hz Peak acceleration Vertical direction 20g, vertical axis direction 15g, lateral axis direction 15g
    Acceleration amplitude 2g Pulse duration 11ms
    Vibration direction Three axial Impact direction Three-axis six-way, 2 times per axial
    Vibration time 20-500-20 Hz for a scan, one scan time 15 min, 2 times per axial Else No power during the test
    Else Power up for performance testing at 2nd scans per axial axis during the test
    下载: 导出CSV
  • [1] 李相迪, 黄英, 张培晴, 等.红外成像系统及其应用[J]. 激光与红外, 2014, 44(3): 229-234. DOI: 10.3969/j.issn.1001-5078.2014.03.01

    LI Xiangdi, HUANG Ying, ZHANG Peiqing, et al. Infrared imaging system and applications[J]. Laser & Infrared, 2014, 44(3): 229-234. DOI: 10.3969/j.issn.1001-5078.2014.03.01

    [2] 李刘苗.海天背景目标红外辐射特性研究[D].西安: 西安电子科技大学, 2011.

    LI Liumiao. Research on Infrared Radiation Characteristic of Object Under Sky and Sea Background[D]. Xi'an: Xi'an University of Electronic Science and technology, 2011.

    [3] 史文欣, 刘仲宇, 王平, 等.航空光电吊舱隔振器布局方式分析[J]. 激光与红外, 2018, 48(8): 1027-1030. DOI: 10.3969/j.issn.1001-5078.2018.08.016

    SHI Wenxin, LIU Zhongyu, WANG Ping, et al. Analysis on vibration isolator layout of aerial optical-electronic pod[J]. Laser & Infrared, 2018, 48(8): 1027-1030. DOI: 10.3969/j.issn.1001-5078.2018.08.016

    [4] 杨艳艳, 亓洪兴, 马艳华, 等.航空红外相机自动调焦设计[J]. 激光与红外, 2016, 46(6): 698-703. DOI: 10.3969/j.issn.1001-5078.2016.06.010

    YANG Yanyan, QI Hongxing, MA Yanhua, et al. Design of automatic focusing for aerial infrared imaging camera[J]. Laser & Infrared, 2016, 46(6): 698-703. DOI: 10.3969/j.issn.1001-5078.2016.06.010

    [5] 王学新, 焦明印.红外光学系统无热化设计方法的研究[J]. 应用光学, 2009, 30(1): 129-133. DOI: 10.3969/j.issn.1002-2082.2009.01.030

    WANG Xuexin, JIAO Mingyin. Athermalization design for infrared optical systems[J]. Journal of Applied Optics, 2009, 30(1): 129-133. DOI: 10.3969/j.issn.1002-2082.2009.01.030

    [6] 贾晓飞, 李宜斌, 陈德智, 等.非制冷红外热像仪的快速自动调焦算法设计[J]. 激光与红外, 2009, 39(6): 688-690. DOI: 10.3969/j.issn.1001-5078.2009.06.030

    JIA Xiaofei, LI Yibin, CHEN Dezhi, et al. Design of high speed arithmetic of auto-focus in uncooled infrared thermal equipment[J]. Laser & Infrared, 2009, 39(6): 688-690. DOI: 10.3969/j.issn.1001-5078.2009.06.030

    [7] 曾戈虹. HgCdTe红外探测器性能分析[J]. 红外技术, 2012, 34(1): 1-3. DOI: 10.3969/j.issn.1001-8891.2012.01.001

    ZENG Gehong. Performance HgCdTe infrared detector at different temperatures[J]. Infrared Technology, 2012, 34(1): 1-3. DOI: 10.3969/j.issn.1001-8891.2012.01.001

    [8] 王芳, 罗寰, 王海晏, 等.机载红外搜索跟踪系统有效探测区域研究[J]. 激光与红外, 2018, 48(5): 585-590. DOI: 10.3969/j.issn.1001-5078.2018.05.009

    WANG Fang, LUO Huan, WANG Haiyan, et al. Research on effective detection area of airborne infrared search and tracking system[J]. Laser & Infrared, 2018, 48(5): 585-590. DOI: 10.3969/j.issn.1001-5078.2018.05.009

    [9] 范晋祥, 张渊.新概念红外成像系统的发展[J]. 红外与激光工程, 2008, 37(3): 386-390. DOI: 10.3969/j.issn.1007-2276.2008.03.003

    FAN Jinxiang, ZHANG Yuan. Development of new concept military infrared imaging system[J]. Infrared and Laser Engineering, 2008, 37(3): 386-390. DOI: 10.3969/j.issn.1007-2276.2008.03.003

  • 期刊类型引用(6)

    1. 王慧赢,王春平,付强,韩子硕,张冬冬. 基于图像特征的红外与低照度图像融合. 系统工程与电子技术. 2023(08): 2395-2404 . 百度学术
    2. 叶玫,刘盈. 基于方向滤波器组与Laplacian能量和的图像融合算法. 包装工程. 2019(01): 218-227 . 百度学术
    3. 杜永生,黄传波. 基于质量度量与颜色校正的多曝光图像融合算法. 电子测量与仪器学报. 2019(01): 90-98 . 百度学术
    4. 赵迪迪,季轶群. 区域方差和点锐度相结合的多聚焦图像融合. 液晶与显示. 2019(03): 278-282 . 百度学术
    5. 朱卫东,王虎,邱振戈,栾奎峰,韩震. 自适应多尺度几何分析的全色和多光谱图像融合方法研究. 红外技术. 2019(09): 852-856 . 本站查看
    6. 王运生,王黎明,聂芬. 基于焦点度量与模糊逻辑的多聚焦图像融合算法. 包装工程. 2018(13): 208-215 . 百度学术

    其他类型引用(9)

图(15)  /  表(1)
计量
  • 文章访问数:  275
  • HTML全文浏览量:  80
  • PDF下载量:  89
  • 被引次数: 15
出版历程
  • 收稿日期:  2020-04-15
  • 修回日期:  2020-12-06
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回