Athermalization of Infrared Zoom Optical System with Large Relative Aperture
-
摘要: 随环境温度变化红外镜头会产生热离焦现象,一般定焦红外光学系统可通过多种红外材料组合或引入衍射面来实现光学被动式无热化设计,而变焦红外光学系统大多是通过移动透镜组来实现机械主动式无热化设计。文中根据光学变焦原理和光学被动式无热化原理,提出一种变焦光学被动式无热化设计方法,并采用该方法设计了一种大相对孔径双视场无热化长波红外光学系统。该系统焦距为25/50 mm(变倍比为2:1),工作波段为8~12 μm,F数为0.9,可匹配640×512,像元为17 μm×17 μm的非制冷红外焦平面阵列探测器。光学设计中采用3种红外光学材料(硫系玻璃HWS6、硒化锌和锗)组合,并引入3个偶次非球面,实现变焦无热化设计。设计结果表明:该系统在宽温度范围内具有良好的成像效果和温度自适应性,在空间频率30 lp/mm处,-50℃~80℃温度范围内各视场MTF均大于0.3。该红外光学系统结构简单、工艺良好,在红外车载领域有着广泛应用前景。Abstract: As the ambient temperature changes, the thermal defocus of optical lenses occurs in infrared lenses. The passive thermal design of an infrared prime lens can be realized by the combination of infrared materials and the introduction of a diffraction surface. However, most infrared zoom lenses are designed using active mechanical compensation. In this study, a passive athermalization design method for zoom optics is proposed based on the principles of zoom optical system and passive optical athermalization, and a long-wave infrared athermalization lens with a large relative aperture and dual field of view is achieved using this method. The focal length was 25/50 mm (with 2 zoom ratio), the wavelength band was 8–12μm, and the F number is 0.9. The system was based on a 640×512 uncooled infrared focal plane detector with a pixel size of 17 μm×17 μm. Three LWIR materials were used in the system, namely Ge, ZnSe, and HWS6, and three high-order aspheric surfaces were introduced to realize the athermalization zoom design. The final design exhibits good imaging quality and temperature applicability over a wide temperature range. In the temperature range of -50℃ to 80℃, the MTF is greater than 0.3 at 30 lp/mm. The system structure is simple, has good usability, and has broad application prospects in the field of infrared vehicles.
-
-
表 1 光学设计参数
Table 1 Optical design parameters
Wavelength range 8~12 μm Efficient focal length 25/50mm F number 0.9 Field of view 31.16°/15.87° Image size(diagonal) 13.93 mm Temperature range -50℃ to + 80℃ 表 2 长焦和短焦的像面热离焦量
Table 2 Thermal defocus of long and short focal
μm 20℃ -50℃ +80℃ Wide field 0 -12.26 -2.16 Narrow field 7.48 -11.15 10.64 表 3 无热化后-50℃~+80℃弥散斑均方根半径
Table 3 Spot diagram during -50℃ to +80℃ after athermalized
μm 20℃ -50℃ +80℃ 25 mm 0° 6.083 4.772 7.618 22° 11.482 9.878 13.481 31.2° 9.862 10.658 11.117 50 mm 0° 5.922 6.153 6.577 11.2° 8.402 8.018 9.538 15.9° 11.554 13.797 10.474 -
[1] 葛琳琳, 王世先, 张瑞, 等. 基于硫系玻璃的光学被动式红外无热化镜头设计[J]. 红外, 2020, 41(2): 7-12. DOI: 10.3969/j.issn.1672-8785.2020.02.002 GE Linlin, WANG Shixian, ZHANG Rui, et al. Design of optical passive infrared non-thermal lens based on chalcogenide glass[J]. Infrared, 2020, 41(2): 7-12. DOI: 10.3969/j.issn.1672-8785.2020.02.002
[2] 王静, 吴越豪, 戴世勋, 等. 硫系玻璃在长波红外无热化连续变焦广角镜头设计中的应用[J]. 红外与激光工程, 2018, 47(3): 156-162. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201803022.htm WANG Jing, WU Yuehao, DAI Shixun, et al. Application of chalcogenide glass in designing a long-wave infrared athermalized continuous zoom wide-angle lens[J]. Infrared and Laser Engineering, 2018, 47(3): 156-162. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201803022.htm
[3] 白瑜, 廖志远, 李华, 等. 硫系玻璃在现代红外热成像系统中的应用[J]. 中国光学, 2014, 7(3): 449-455. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201403014.htm BAI Yu, LIAO Zhiyuan, LI Hua, et al. Application of the chalcogenide glass in modern infrared thermal imaging systems[J]. Chinese Optics, 2014, 7(3): 449-455. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201403014.htm
[4] 赵延, 邓键, 于德志, 等. 光学被动消热差的长波红外双视场光学系统设计[J]. 红外与激光工程, 2014, 43(5): 1545-1548. DOI: 10.3969/j.issn.1007-2276.2014.05.035 ZHAO Yan, DENG Jian, YU Dezhi, et al. Design of dual field-of-view optical system in long wave infrared with optical passive athermalization[J]. Infrared and Laser Engineering, 2014, 43(5): 1545-1548. DOI: 10.3969/j.issn.1007-2276.2014.05.035
[5] 陈建发, 王合龙. 双视场长波红外光学系统无热化设计[J]. 激光与光电子学进展, 2013, 50(6): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201306023.htm CHEN Jianfa, WANG Helong. Athermalization design of dual-field-of-view long wavelength infrared optical system[J]. Laser & Optoelectronics Progress, 2013, 50(6): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201306023.htm
[6] 邓键, 童卫红, 安晓强, 等. 双视场红外变焦镜头的无热化研究[J]. 应用光学, 2011, 32(1): 133-137. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201101032.htm DENG Jian, TONG Weihong, AN Xiaoqiang, et al. Athermalization of infrared zoom system[J]. Journal of Applied Optics, 2011, 32(1): 133-137. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201101032.htm
[7] LI S H, YANG C C. Optical passive athermalization for infrared zoom system[C]//Proc. of SPIE, 2007, 67224E: 1-8.
[8] 王文生. 现代光学系统设计[M]. 北京: 国防工业出版社, 2016: 106-110. WANG Wensheng. Contemporary Optical System Design[M]. Beijing: National Defense Industry Press, 2016: 106-110.
-
期刊类型引用(1)
1. 朱强,周维虎,陈晓梅,石俊凯,李冠楠. 高速实时近红外弱信号检测系统. 光学精密工程. 2022(24): 3116-3127 . 百度学术
其他类型引用(2)