矩阵式远红外感温传感器温度补偿及校准方法

刘文昉, 雷瑾, 吴铎

刘文昉, 雷瑾, 吴铎. 矩阵式远红外感温传感器温度补偿及校准方法[J]. 红外技术, 2024, 46(9): 1092-1098.
引用本文: 刘文昉, 雷瑾, 吴铎. 矩阵式远红外感温传感器温度补偿及校准方法[J]. 红外技术, 2024, 46(9): 1092-1098.
LIU Wenfang, LEI Jin, WU Duo. A Temperature Compensation and Calibration Method for Thermal Infrared Array Sensor[J]. Infrared Technology , 2024, 46(9): 1092-1098.
Citation: LIU Wenfang, LEI Jin, WU Duo. A Temperature Compensation and Calibration Method for Thermal Infrared Array Sensor[J]. Infrared Technology , 2024, 46(9): 1092-1098.

矩阵式远红外感温传感器温度补偿及校准方法

详细信息
    作者简介:

    刘文昉(1990-),高级电控系统工程师,研究方向:电子技术应用。E-mail: liuwenfang0508@163.com

  • 中图分类号: TP212

A Temperature Compensation and Calibration Method for Thermal Infrared Array Sensor

  • 摘要:

    针对远红外矩阵式温度传感器提出一种可显著提高温度测量精度的补偿及校准方法,该方法建立了基于矩阵式红外阵列温度检测的最值补偿模型,并提出一种距离归一化校准方法,利用该温度补偿及校准方法可对矩阵式红外温度传感器在任意角度,任意距离下的测量误差进行补偿和校准。实验结果表明,该方法能够减少测量角度及距离对温度测量的影响,显著提高矩阵式红外温度传感器的测量精度,并具备实用价值。

    Abstract:

    A temperature compensation and calibration method of the thermal infrared radiometer array sensor were introduced to improve the measurement accuracy. A maximum temperature calibration model were established based on the matrix IR temperature sensor, and a distance uniform method were introduced in this paper. By using the method, measurement error can be calibrated without the limitation of the angle and distance of the IR array sensor. Test results showed that this method can reduce the influences of the angle or distance of the measurement, and improve the accuracy.

  • 图  1   传感器像素矩阵坐标系示意图

    Figure  1.   Axis of infrared array pixel sensor

    图  2   水平方向补偿曲线

    Figure  2.   Compensation curves in horizontal axis

    图  3   不同温度下水平方向补偿后曲线

    Figure  3.   Compensation curves in horizontal axis of different temperature

    图  4   不同距离下x轴方向的补偿曲线

    Figure  4.   Compensation curves by different distances of x axis

    图  5   不同距离等效及归一化示意图

    Figure  5.   Different distance equivalent and uniformization

    图  6   不同距离补偿校准曲线

    Figure  6.   Compensation coefficient vs distance

    图  7   实验现场测试图

    Figure  7.   Experimental field test environment

    表  1   水平x方向补偿数据汇总

    Table  1   Compensation on horizontal direction

    Column index Sensor 1 Sensor 2 Sensor 3 Avg.
    Avg. Comp. Avg. Comp. Avg. Comp.
    2 80.917 1.165 81.547 1.159 80.464 1.184 1.161
    4 84.217 1.119 85.353 1.107 83.725 1.137 1.119
    6 87.823 1.073 87.723 1.077 87.422 1.089 1.080
    8 89.250 1.056 89.550 1.055 89.652 1.062 1.058
    9 91.997 1.025 90.147 1.048 92.263 1.032 1.036
    11 92.330 1.021 91.477 1.033 93.592 1.018 1.022
    13 94.017 1.003 94.067 1.004 95.093 1.001 1.004
    16 94.267 1.000 94.473 1.000 95.229 1.000 1.000
    17 94.267 1.000 94.317 1.000 95.225 1.000 1.000
    20 93.187 1.012 93.660 1.007 94.876 1.004 1.007
    22 93.053 1.013 92.993 1.014 93.815 1.015 1.017
    24 90.920 1.037 90.650 1.040 91.763 1.038 1.039
    25 89.870 1.049 90.190 1.046 90.162 1.056 1.049
    27 86.167 1.094 87.390 1.079 87.612 1.087 1.081
    29 84.783 1.112 85.347 1.105 85.603 1.112 1.105
    31 79.800 1.181 81.057 1.164 80.881 1.177 1.164
    下载: 导出CSV

    表  2   不同距离补偿值

    Table  2   Compensation of different distances

    de Φ10 cm 40 cm×60 cm 80 cm×120cm
    Avg. c(d) d1 Avg. c(d) d2 Avg. c(d)
    2.5 84.82 0.92 10.00 85.68 0.91 20.00 80.67 0.92
    5.0 83.947 0.93 20.00 84.62 0.92 40.00 79.88 0.92
    7.5 83.06 0.94 30.00 83.54 0.94 60.00 79.20 0.93
    10.0 82.22 0.95 40.00 82.70 0.94 80.00 78.27 0.94
    15.0 80.81 0.96 60.00 81.29 0.96 120.00 77.13 0.96
    20.0 80.01 0.97 80.00 80.03 0.98 160.00 75.86 0.97
    25.0 79.42 0.98 100.00 79.60 0.98 200.00 75.39 0.98
    30.0 78.92 0.99 120.00 78.98 0.99 240.00 75.09 0.98
    35.0 78.53 0.99 140.00 78.46 1.00 280.00 74.02 1.00
    40.0 77.90 1.00 160.00 78.08 1.00 320.00 73.81 1.00
    下载: 导出CSV

    表  3   实验验证数据

    Table  3   Test of different distances and angles with compensation

    H/cm d/cm de/cm x y T0/℃ e0% Tr/℃ er% Tl/℃
    Φ10 cm 30 30 8 31 85.1 -13.2 99.0 0.99 98
    30 30 21 10 90.6 -7.5 97.0 -1.03 98
    40 40 4 24 85.9 -9.6 96.2 1.24 95
    40 40 4 6 82.1 -13.6 95.2 0.26 95
    40 cm×60 cm 80 20 10 5 84.5 -6.2 89.9 -0.15 90
    80 20 20 28 83.8 -6.9 91.3 1.45 90
    100 25 15 9 95.5 -2.6 97.9 -0.12 98
    100 25 7 29 88.7 -9.5 99.3 1.30 98
    80 cm×120 cm 240 30 19 8 73.1 -8.7 81.3 1.60 80
    240 30 7 27 71.2 -11.0 81.4 1.72 80
    160 20 6 19 91.7 -6.5 95.7 -2.35 98
    160 20 19 21 91.8 -6.3 95.6 -2.42 98
    下载: 导出CSV
  • [1] 何天文, 汪同庆, 刘建胜. 医用红外热图像信息处理系统的实现[J]. 重庆邮电学院学报, 2002, 14(4): 51-54.

    HE Tianwen, WANG Tongqing, LIU Jiansheng. Implementation of medical infrared image information processing system[J]. Journal of Chongqing University of Posts and Telecommunications Science, 2002, 14(4): 51-54.

    [2] 李云红, 孙晓刚, 原桂彬. 红外热像仪精确测温技术[J]. 光学精密工程, 2007, 15(9): 1336-1341. DOI: 10.3321/j.issn:1004-924x.2007.09.005

    LI Yunhong, SUN Xiaogang, YUAN Guibin. Accurate temperature measurement by infrared thermal imager[J]. Optical Precision Engineering, 2007, 15(9): 1336-1341. DOI: 10.3321/j.issn:1004-924x.2007.09.005

    [3] 杨立. 红外热像仪测温计算与误差分析[J]. 红外技术, 1999, 21(4): 20-24.

    YANG Li. Temperature measurement calculation and error analysis of infrared thermal imager[J]. Infrared Technology, 1999, 21(4): 20-24.

    [4] 隋修宝, 陈钱, 顾国华. 环境温度对红外图像非均匀性影响的研究[J]. 光子学报, 2008, 12(1): 2572-2575.

    SUI Xiubao, CHEN Qian, GU Guohua. Study on the influence of ambient temperature on the non-uniformity of infrared image[J]. Journal of Photonics, 2008, 12(1): 2572-2575.

    [5] 屈惠民, 陈钱. 红外焦平面阵列二元非线性的非均匀性理论模型[J]. 电子学报, 2008, 11(36): 2150-2153.

    QU Huimin, CHEN Qian. Nonuniformity theoretical model for binary nonlinearity of infrared focal plane arrays[J]. Journal of Electronics, 2008, 11(36): 2150-2153.

    [6] 郑兆平, 曾汉生, 丁翠娇. 红外热成像测温技术及其应用[J]. 红外技术, 2003, 25(1): 96-98. DOI: 10.3969/j.issn.1001-8891.2003.01.024

    ZHENG Zhaoping, ZENG Hansheng, DING Cuijiao. Infrared thermal imaging temperature measurement technology and its application[J]. Infrared Technology, 2003, 25(1): 96-98. DOI: 10.3969/j.issn.1001-8891.2003.01.024

    [7] 胡贵红, 陈钱, 沈晓燕. 红外焦平面探测器响应非线性的测定[J]. 光电子&激光, 2003, 14(5): 489-492. DOI: 10.3321/j.issn:1005-0086.2003.05.013

    HU Guihong, CHEN Qian, SHEN Xiaoyan. Measurement of nonlinear response of infrared focal plane detectors[J]. Photoelectron & Laser, 2003, 14(5): 489-492. DOI: 10.3321/j.issn:1005-0086.2003.05.013

    [8]

    DAI Shaosheng, YAN Xiaohui, ZHAN Tianqi. Study on high-precision temperature measurement of infrared thermal imager [J]. Infrared Physics & Technology, 2010, 53: 396-398.

    [9] 叶玮琳, 郑传涛, 王一丁. 中红外甲烷检测仪稳定性实验及温度补偿研究[J]. 光学学报, 2014, 34(3): 0323003.

    YE Weilin, ZHENG Chuantao, WANG Yiding. Study on stability experiment and temperature compensation of mid-infrared methane detector[J]. Journal of Optics, 2014, 34(3): 0323003.

    [10] 李庆, 刘上乾, 赖睿, 等. 一种基于场景的红外焦平面阵列非均匀性校正算法[J]. 光子学报, 2006, 35(5): 720723.

    LI Qing, LIU Shanggan, LAI Rui, et al. A scene-based nonuniformity correction algorithm for infrared focal plane arrays[J]. Journal of Photonics, 2006, 35(5): 720723.

图(7)  /  表(3)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  5
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-19
  • 修回日期:  2023-09-21
  • 刊出日期:  2024-09-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日