高海拔地区科研望远镜sCMOS制冷型成像系统设计

李玟汉, 张恒, 刘昌华, 邵蒙, 卢昌正, 吴志勇

李玟汉, 张恒, 刘昌华, 邵蒙, 卢昌正, 吴志勇. 高海拔地区科研望远镜sCMOS制冷型成像系统设计[J]. 红外技术, 2025, 47(1): 19-28.
引用本文: 李玟汉, 张恒, 刘昌华, 邵蒙, 卢昌正, 吴志勇. 高海拔地区科研望远镜sCMOS制冷型成像系统设计[J]. 红外技术, 2025, 47(1): 19-28.
LI Wenhan, ZHANG Heng, LIU Changhua, SHAO Meng, LU Changzheng, WU Zhiyong. Design of sCMOS Refrigerated Imaging System for High-altitude Research Telescopes[J]. Infrared Technology , 2025, 47(1): 19-28.
Citation: LI Wenhan, ZHANG Heng, LIU Changhua, SHAO Meng, LU Changzheng, WU Zhiyong. Design of sCMOS Refrigerated Imaging System for High-altitude Research Telescopes[J]. Infrared Technology , 2025, 47(1): 19-28.

高海拔地区科研望远镜sCMOS制冷型成像系统设计

基金项目: 

国家重点研发计划-望远镜主体结构与探测器研制 2020YFA0406502

详细信息
    作者简介:

    李玟汉(1997-),男,硕士研究生,研究方向为sCMOS成像电路开发。E-mail: nuaalwh@163.com

    通讯作者:

    张恒(1990-),男,副研究员,博士,研究方向成像电子学系统设计。E-mail: zhanghenghit@126.com

  • 中图分类号: TN27

Design of sCMOS Refrigerated Imaging System for High-altitude Research Telescopes

  • 摘要:

    为了满足我国高海拔地区大视场天文望远镜进行微光探测的需求,基于长光辰芯公司的高性能sCMOS(Scientific CMOS)探测器GSENSE1516BSI,以Xilinx公司的Kintex-7 FPGA为主控芯片,设计了低噪声、高灵敏度、热电制冷器(Thermo Electric Cooler, TEC)主动制冷的成像系统,硬件部分包括sCMOS探测器外围电路、FPGA的读出电路和TEC主动制冷模块;软件部分包括时序控制模块、数据对齐接收训练模块和DDR3高速缓存模块。设计开发了大面阵像素数据的DDR3读写验证模块,可以在设计阶段预验证大面阵像素数据在DDR3子模块中缓存的可靠性,提前发现潜在的数据传输问题,优化了系统测试方案。最终经过整机测试,实验结果表明:设计的sCMOS成像系统工作稳定,读出噪声为4.33 e,制冷温度可达-30℃,-30℃下暗电流为0.15e/pixel/s,可稳定进行4 k×4 k大面阵像素数据的读出,满足大视场天文观测需求。

    Abstract:

    To meet the needs of low-light detection with large field-of-view astronomical telescopes in high-altitude areas in our country, this study utilized a high-performance scientific CMOS (sCMOS) detector, GSENSE1516BSI, from Chang Guang Satellite Technology Co., Ltd. The imaging system, which is controlled by a Xilinx Kintex-7 FPGA, was designed to be low-noise, highly sensitive, and to utilize thermoelectric cooling (TEC) technology for active cooling. The hardware components encompass the peripheral circuitry of the sCMOS detector, FPGA readout circuit, and TEC active cooling module. The software includes a timing control module, a data alignment and reception training module, and a DDR3 high-speed cache module. In addition, a large-array pixel data DDR3 read-write validation module was developed to validate the reliability of storing large-array pixel data in the DDR3 submodule during the design phase. This early validation helped identify potential data transmission issues, thereby optimizing the system testing approach. Ultimately, comprehensive testing confirmed the stable performance of the designed sCMOS imaging system with a readout noise of 4.33e and a cooling temperature of -30℃; the dark current at -30℃ is 0.15 e/pixel/s. It can stably read 4 k×4 k large array pixel data, satisfying the astronomical observation requirements of large-field telescopes.

  • 图  1   成像电子学系统顶层框图

    Figure  1.   Top-level block diagram of the imaging electronics system

    图  2   GSENSE1516BSI内部结构

    Figure  2.   GSENSE1516BSI internal structure

    图  3   上电控制模块硬件原理图

    Figure  3.   Hardware schematic diagram of power-on control module

    图  4   探测器上电时序

    Figure  4.   Detector power-on sequence

    图  5   GSENSE1516BSI时钟结构

    Figure  5.   GSENSE1516BSI clock structure

    图  6   TEC制冷结构图

    Figure  6.   TEC refrigeration structure diagram

    图  7   FPGA程序结构

    Figure  7.   FPGA program structure

    图  8   字位通道校正对齐过程

    Figure  8.   Word, bit, channel alignment process

    图  9   位校正算法流程图

    Figure  9.   Bit correction algorithm flowchart

    图  10   DDR3模块内部数据流

    Figure  10.   DDR3 module internal data flow

    图  11   DDR3读写测试模块仿真波形

    Figure  11.   DDR3 read and write test module simulation waveform

    图  12   系统读出噪声分布

    Figure  12.   System readout noise distribution

    图  13   成像系统在图像传感器不同温度下的读出噪声测试结果

    Figure  13.   Test results of readout noise of imaging systems at different temperatures of image sensors

    图  14   成像系统在传感器不同温度下的暗电流测试结果

    Figure  14.   Dark current test results of imaging system at different sensor temperatures

    图  15   四级TEC制冷曲线

    Figure  15.   Four-stage TEC cooling curve

    图  16   封装完成的相机及搭载望远镜结构

    Figure  16.   Packaged camera and telescope structure

    图  17   暗场灰度分布图

    Figure  17.   Dark field grayscale distribution map

    图  18   测试拍摄的星图及其噪声能谱密度

    Figure  18.   Test shooting of the star map and its noise spectral density

    图  19   不同条件下的放大后的星图细节

    Figure  19.   Enlarged star map details under different conditions

    表  1   GSENSE1516BSI图像传感器主要参数

    Table  1   Main parameters of GSENSE1516BSI image sensor

    Parameters Values
    Photosensitive area/mm 61.44×61.44
    Pixel size/μm 15×15
    Resolution 4096×4096
    Frame rate/fps 9
    Readout noise/e 4.17e
    Dark current 15.2 e/pixel/s @ 25℃
    Dynamic range 90 dB @ HDR mode
    Peak quantum efficiency 96% @ 580 nm
    Power consumption 1.37 W
    下载: 导出CSV

    表  2   探测器电源类型

    Table  2   Detector power type

    Power source Pin Typical values/V
    Analog reference voltage VRF
    VRS
    VREF
    1.2±0.05
    1.2±0.05
    1.4±0.05
    VPC 1.4±0.05
    Digital supply VDD18D
    VDD18AD
    1.8±0.05
    1.8±0.05
    Pixel supply VDDCH
    VDRL
    4.2±0.05
    0±0.05
    下载: 导出CSV

    表  3   FPGA电源种类

    Table  3   FPGA power type

    FPGA power supply Voltage/V Power on sequence
      VCCINT       1       EN1
      VCCAUX       1.8       EN2
      VCCBRAM       1       EN3
      VCCADC       1.8       EN3
      VCCAUX_IO       2       EN3
      VCCO_32/33/34       1.5       EN4
      VCCO_13/16/12/18/17       2.5       EN5
      VCCO_0/14/15       3.3       EN6
    下载: 导出CSV

    表  4   系统主要时钟

    Table  4   System main clock

    Clock name Period/ns Frequency/MHz
    clk_crystal_p/n 5 200
    clk_ctrl_rxg 5 200
    clk_sys 50 20
    clk_sdr_buf 8 125
    clk_ref_buf 96 10.417
    clk_rxio 8 125
    clk_rxg 96 10.417
    clk_txio 1.786 560
    clk_txg 12.5 80
    下载: 导出CSV
  • [1] 姜婷, 陈伟男, 夏振涛, 等. 微光探测成像系统电路设计与实现[J]. 红外技术, 2022, 44(10): 1045-1051. http://hwjs.nvir.cn/article/id/10c0c60c-b0c0-4de1-980f-1f6ccce1e52f

    JIANG Ting, CHEN Weinan, XIA Zhentao, et al. Circuit design and implementation of low light detection imaging system[J]. Infrared Technology, 2022, 44(10): 1045-1051. http://hwjs.nvir.cn/article/id/10c0c60c-b0c0-4de1-980f-1f6ccce1e52f

    [2] 王征, 何云丰, 曹小涛, 等. 基于FPGA的大面阵CMOS相机高速率电子学系统设计[J]. 液晶与显示, 2016, 31(2): 173-178.

    WANG Zheng, HE Yunfeng, CAO Xiaotao, et al. Design of high speed electronics system for large area array CMOS camera based on FPGA[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(2): 173-178.

    [3] 宁永慧, 刘辉, 赵庆磊, 等. 大面阵高帧频CMOS成像电子学系统设计[J]. 光学精密工程, 2019, 27(5): 1167-1177.

    NING Yonghui, LIU Hui, ZHAO Qinglei, et al. Design of large area array high frame rate CMOS imaging electronics system[J]. Optics and Precision Engineering, 2019, 27(5): 1167-1177.

    [4] 王伶杰, 杨世洪. sCMOS相机系统设计[J]. 电子设计工程, 2022, 30(5): 159-164, 169.

    WANG Lingjie, YANG Shihong. Design of sCMOS camera system[J]. Electronic Design Engineering, 2022, 30(5): 159-164, 169.

    [5] 孙宏海, 何舒文, 吴培, 等. 高动态科学级CMOS相机设计与成像分析[J]. 液晶与显示, 2017, 32(3): 240-248.

    SUN Honghai, HE Shuwen, WU Pei, et al. Design and imaging analysis of high dynamic science level CMOS camera[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(3): 240-248.

    [6] 潘海俊, 阮萍, 李福, 等. CCD芯片热电制冷系统的非稳态性能分析[J]. 红外与激光工程, 2012, 41(11): 3021-3026.

    PAN Haijun, RUAN Ping, LI Fu, et al. Unsteady performance analysis of CCD chip thermoelectric refrigeration system[J]. Infrared and Laser Engineering, 2012, 41(11): 3021-3026.

    [7] 梁超, 马天翔. 基于FPGA的CMOS成像电路设计[J]. 国外电子测量技术, 2016, 35(4): 71-76, 84.

    LIANG Chao, MA Tianxiang. Design of CMOS imaging circuit based on FPGA[J]. Foreign Electronic Measurement Technology, 2016, 35(4): 71-76, 84.

    [8] 夏巧桥, 胡正文, 张青林. 遥感相机快视高速可靠传输系统的设计与实现[J]. 光学精密工程, 2018, 26(4): 971-979.

    XIA Qiaoqiao, HU Zhengwen, ZHANG Qinglin. Design and implementation of a fast and reliable transmission system for remote sensing cameras[J]. Optics and Precision Engineering, 2018, 26(4): 971-979.

    [9] 张晨, 孙世磊, 石文轩, 等. 工业线阵CCD相机系统测试与噪声评估[J]. 光学精密工程, 2016, 24(10): 2532-2539.

    ZHANG Chen, SUN Shilei, SHI Wenxuan, et al. Testing and noise evaluation of industrial linear array CCD camera system[J]. Optics and Precision Engineering, 2016, 24(10): 2532-2539.

    [10] 张恒, 马庆军, 王淑荣. 紫外遥感仪器高速CMOS成像电子学系统[J]. 光学精密工程, 2018, 26(2): 471-479.

    ZHANG Heng, MA Qingjun, WANG Shurong. High speed CMOS imaging electronics system for ultraviolet remote sensing instruments[J]. Optics and Precision Engineering, 2018, 26(2): 471-479.

    [11] 李轩, 侯正信, 徐宏宇, 等. CMOS图像传感器噪声抑制方法研究[J]. 计算机工程与应用, 2011, 47(8): 167-169.

    LI Xuan, HOU Zhengxin, XU Hongyu, et al. Research on noise suppression methods for CMOS image sensors[J]. Computer Engineering and Applications, 2011, 47(8): 167-169.

    [12] 张娜, 温中流, 龚婧, 等. 一种高灵敏度制冷型科学级CCD相机的设计[J]. 半导体光电, 2016, 37(4): 580-583.

    ZHANG Na, WEN Zhongliu, GONG Jing, et al. Design of a high sensitivity refrigerated scientific grade CCD camera[J]. Semiconductor Optoelectronics, 2016, 37(4): 580-583.

    [13] 杨文刚, 樊学武, 王晨洁, 等. 天基望远镜探测器组件热电制冷系统设计与试验[J]. 光子学报, 2020, 49(8): 7-18.

    YANG Wengang, FAN Xuewu, WANG Chenjie, et al. Design and experiment of thermoelectric refrigeration system for space-based telescope detector components[J]. Acta Photonica Sinica, 2020, 49(8): 7-18.

  • 期刊类型引用(2)

    1. 高于山,邓瑛,张菁. 临近空间光学载荷设计关键指标与技术综述. 空天技术. 2023(03): 88-93 . 百度学术
    2. 马俊,朱猛,王才喜,史文杰. 临近空间光电探测技术与发展展望. 空天技术. 2022(02): 85-96 . 百度学术

    其他类型引用(3)

图(19)  /  表(4)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  12
  • PDF下载量:  25
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-11-23
  • 修回日期:  2023-12-10
  • 刊出日期:  2025-01-19

目录

    /

    返回文章
    返回