Analysis of Long-wave Infrared Radiation Characteristics of Aerial Target in Different Azimuth at Night
-
摘要: 针对试验和训练中靶机实装模拟、建模仿真需求,需在外场动态测试靶机飞行状态下红外辐射特性,该测量结果置信度较高。本文通过对红外成像测量设备定标,计算路径辐射和透过率,亮度反演的方法获得了靶机夜间不同方位辐射强度分布,测量误差约为21.24%。分析测量结果,但当靶机相对测量设备绕飞时,靶机不同方位辐射强度基本一致;靶机在一定距离外无法探测长波尾焰辐射,在靶机模拟和建模中需合理考虑尾焰辐射。该距离下靶机目标/背景灰度对比度约为人眼响应阈值的2倍,人工侦察探测识别较为困难,在靶机外场模拟时需注意对比度对试验探测识别结果的影响。本文可为靶机特性建模、外场模拟应用和测量设备研制提供支撑。
-
关键词:
- 夜间长波红外辐射特性 /
- 不同方位 /
- 靶机 /
- 辐射强度分布
Abstract: Aiming at the requirements of target drone applications, modeling and simulation, outfield testing of infrared radiation characteristics of target drone in flight is necessary, and the results have high confidence level. In this paper, the radiation intensity distribution of the target drone in different azimuth at night is obtained by calibrating the infrared measuring equipment infrared imaging measurement equipment, calculating the path radiation and transmittance, and radiance retrieval. The measurement error is about 21.24 %. The radiation intensity is affected by other factors. When the target drone is flying around the equipment, the radiation intensity in different azimuth is basically the same. Tail flame is difficult to detect in long-wave infrared band. In the characteristics simulation and modeling of target drone, the influence of tail flame radiation has little effect. At this distance, the gray contrast between the target and background is only about twice the contrast response threshold of eye. The target drone is hard to track by manual detecting. It should be paid attention to the influence of contrast in the characteristics simulation of target drone. The research results of this paper can provide support for characteristics simulation and modeling of target drone and development of infrared measuring equipment. -
-
表 1 黑体参数
Table 1 Parameters of blackbody
Parameters Parameter ranges Temperature range/℃ 0~100 Radiation area/mm 300×300 emissivity 0.98±0.02 Temperature resolution/℃ 0.01 Temperature accuracy/℃ ±0.03 Uniformity/℃ 0.4 -
[1] 马骏. 高空飞机蒙皮长波红外辐射测量方法研究[D]. 上海: 上海技术物理研究所, 2020: 1-10. MA Jun. Study on Ground Measurement Method of Longwave Infrared Radiation of Airplane'S Skin at High Atltitude[D]. Shanghai: Shanghai Institute of Technical Physics, 2020: 1-10.
[2] 赵楠, 李晓霞, 马森, 等. 靶机IR特性模拟技术发展现状及展望[J]. 红外技术, 2011, 33(11): 625-629. DOI: 10.3969/j.issn.1001-8891.2011.11.002 ZHAO Nan, LI Xiaoxia, MA Sen, et al. Development of IR characteristics simulation of target-planes [J]. Infrared Technology, 2011, 33(11): 625-629. DOI: 10.3969/j.issn.1001-8891.2011.11.002
[3] 刘鑫, 欧渊, 冯富强, 等. 靶机红外特性实验与建模研究[J]. 中国测试, 2020, 46(11): 153-157. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202011027.htm LIU Xin, OU Yuan, FENG Fuqiang, et al. Experimental and modeling research on infrared characteristics of a target[J]. China Measurement & Test, 2020, 46(11): 153-157. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202011027.htm
[4] 杨翔云, 吕勇, 刘洋, 等. 靶标系统中的目标红外特性建模技术研究[J]. 激光与红外, 2021, 5(10): 1336-1441. DOI: 10.3969/j.issn.1001-5078.2021.10.012 YANG Xiangyun, LV Yong, LIU Yang, et al. Research on target infrared characteristic modeling technology in target system[J]. Laser & Infrared, 2021 5(10): 1336-1441. DOI: 10.3969/j.issn.1001-5078.2021.10.012
[5] 王超哲, 童中翔, 刘永志, 等. 隐身飞机红外辐射特性测试评估方法探讨[J]. 红外与激光工程, 2012, 41(11): 2891-2897. DOI: 10.3969/j.issn.1007-2276.2012.11.007 WANG Chaozhe, TONG Zhongxiang, LIU Yongzhi, et al. Evaluation method of stealth aircraft's infrared radiation measurement [J]. Infrared and Laser Engineering, 2012, 41(11): 2891-2897. DOI: 10.3969/j.issn.1007-2276.2012.11.007
[6] 姚凯凯, 许帆, 王怡. 飞行器目标空中红外辐射特性测试技术研究[J]. 测控技术, 2020, 39(4): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-IKJS202004002.htm YAO Kaikai, XU Fan, WANG Yi. Research on testing technology of airborne infrared radiation characteristics of aircraft[J]. Measurement & Control Technology, 2020, 39(4): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-IKJS202004002.htm
[7] 乔铁英, 蔡立华, 李宁, 等. 基于红外辐射特性系统实现对面目标测量[J]. 中国光学, 2018, 11(5): 805-811. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201805012.htm QIAO Tieying, CAI Lihua, LI Ning, et al. Opposite target measurement based on infrared radiation characteristic system[J]. Chinese Optics, 2018, 11(5): 805-811. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201805012.htm
[8] 杨词银, 张建萍, 曹立华. 基于实时标校的目标红外辐射测量新方法[J]. 红外与毫米波学报, 2011, 30(3): 284-288. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201103022.htm YANG Ciyin, ZHANG Jianping, CAO Lihua. Infrared radiation measure ment based on real-time correction[J]. Journal of Infrared Millimeter Wave, 2011, 30(3): 284-288. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201103022.htm
[9] 李宁, 张云峰, 刘春香, 等. 1 m口径红外测量系统的辐射定标[J]. 光学精密工程, 2014, 22(8): 2054-2060. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201408011.htm LI Ning, ZHANG Yunfeng, LIU Chunxiang, et al. Calibration of 1 m aperture infrared theodolite[J]. Optics and Precision Engineering, 2014, 22(8): 2054-2060. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201408011.htm
[10] 常松涛. 红外经纬仪结构设计及提高其辐射测量精度的关键技术研究[D]. 北京: 中国科学院大学, 2015: 80-91. CHANG Songtao. Research on Infrared Theodolite Design and Key Technologies to Improve the Radiometry Precision[D]. Beijing: University of the Chinese Academy of Sciences, 2015: 80-91.
[11] 杜胜华, 龚加明, 夏新林. 某飞行器红外辐射特性研究[J]. 红外与激光工程, 2008, 37(S2): 432-436. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2008S2022.htm DU Shenghua, GONG Jiaming, XIA Xinlin. Infrared characteristics of a spacecraft[J]. Infrared and Laser Engineering, 2008, 37(S2): 432-436. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2008S2022.htm
[12] 李建勋, 童中翔, 王超哲, 等. 飞机目标红外特性计算与图像仿真[J]. 兵工学报, 2012, 33(11): 1310-1318. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201211006.htm LI Jianxun, TONG Zhongxiang, WANG Chaozhe, et al. Calclution and imaging simulation of aircraft infrared radiation characteristic[J]. Acta Armament Ⅱ, 2012, 33(11): 1310-1318. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201211006.htm
[13] 黄伟, 吉洪湖. 蒙皮反射的背景辐射对亚声速飞机红外特征的影响研究(二): 应用[J]. 红外与激光工程, 2015, 44(7): 2039-2043. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201507013.htm HUANG Wei, JI Honghu. Effect of reflected background radiation by skin on infrared characteristics of subsonic aircraft(Ⅱ): application[J]. Infrared and Laser Engineering, 2015, 44(7): 2039-2043. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201507013.htm
[14] 张建奇, 王晓蕊. 光电成像系统建模及性能评估理论[M]. 西安: 西安电子科技大学出版社, 2010: 312-320. ZHANG Jianqi, WANG Xiaorui. The Technology on Modeling and Performance Evaluation of Electro-Optical Imaging System[M]. Xi'an: XiDian University Press, 2010: 312-320.
[15] 公志强, 刘仁军, 汪利庆, 等. 一种基于红外对比度提升的高动态范围压缩技术[J]. 红外技术, 2021, 43(8): 792-797. http://hwjs.nvir.cn/article/id/f858a5af-05cb-4918-9f2c-f163af6b5bb5 GONG Zhiqiang, LIU Renjun, WANG Qingli, et al. A high dynamic range compression technique based on infrared contrast enhancement[J]. Infrared Technology, 2021, 43(8): 792-797. http://hwjs.nvir.cn/article/id/f858a5af-05cb-4918-9f2c-f163af6b5bb5