基于压缩感知的液晶可调谐滤波器光谱快速采集方法

孙梽珅, 张旭, 王宿慧, 曹莹莹, 郭腾霄, 曹树亚

孙梽珅, 张旭, 王宿慧, 曹莹莹, 郭腾霄, 曹树亚. 基于压缩感知的液晶可调谐滤波器光谱快速采集方法[J]. 红外技术, 2021, 43(7): 635-642.
引用本文: 孙梽珅, 张旭, 王宿慧, 曹莹莹, 郭腾霄, 曹树亚. 基于压缩感知的液晶可调谐滤波器光谱快速采集方法[J]. 红外技术, 2021, 43(7): 635-642.
SUN Zhishen, ZHANG Xu, WANG Suhui, CAO Yingying, GUO Tengxiao, CAO Shuya. Fast Spectral Acquisition Method Based on Compressed Sensing for Liquid Crystal Tunable Filters[J]. Infrared Technology , 2021, 43(7): 635-642.
Citation: SUN Zhishen, ZHANG Xu, WANG Suhui, CAO Yingying, GUO Tengxiao, CAO Shuya. Fast Spectral Acquisition Method Based on Compressed Sensing for Liquid Crystal Tunable Filters[J]. Infrared Technology , 2021, 43(7): 635-642.

基于压缩感知的液晶可调谐滤波器光谱快速采集方法

基金项目: 

国民核生化灾害防护国家重点实验室科研基金 SKLNBC2019-2

详细信息
    作者简介:

    孙梽珅(1992-),男,助理工程师,主要从事危险化学品远距离探测技术研究。E-mail: sunzhishen@szs.anonaddy.com

    通讯作者:

    郭腾霄(1985-),男,工程师,主要从事化学气体远距离探测技术研究。E-mail: guotengxiao@sklnbcpc.cn

    曹树亚(1973-),男,研究员,主要从事危险化学品现场检测与远距离探测识别。E-mail: caoshuya@sklnbcpc.cn

  • 中图分类号: TP393

Fast Spectral Acquisition Method Based on Compressed Sensing for Liquid Crystal Tunable Filters

  • 摘要: 为提高液晶可调谐滤波器(Liquid Crystal Tunable Filter, LCTF)的光谱采集效率,提出了一种适用于LCTF光谱成像系统的快速采集方法,设计构建了更加完善的观测矩阵,在压缩感知理论框架内实现了光谱超分辨率重建,并通过实验验证了该方法的可行性。实验结果表明,在采样率为18.08%(采样步长30 nm)时,重建得到的4.81 nm分辨率光谱与传统全采样光谱的相关系数为0.91,超分辨率重建峰值信噪比(Peak Signal-to-Noise Ratio, PSNR)为99.63 dB,采集速度是传统方式的5.53倍。该方法在保证光谱分辨率和光谱识别准确率的前提下,实现了光谱数据的快速和轻量化采集,为动态目标测量和快速检测提供了可行的技术途径,拓展了LCTF光谱成像技术的应用场景。
    Abstract: To improve the spectral acquisition efficiency of the Liquid Crystal Tunable Filter(LCTF). A fast acquisition method which could be applied to the spectral imaging system was proposed. A better observation matrix was designed and constructed. Within the theoretical framework of compressed sensing, spectral super-resolution reconstruction was made possible and the feasibility of the method was verified by experiments. The results indicated that when the sampling rate of was 18.08% (sampling step length was 30 nm), the correlation coefficient between the reconstructed 4.81 nm resolution spectrum and the traditional full sampling spectrum was 0.91, the Peak Signal-to-Noise Ratio (PSNR) of the reconstructed super resolution spectrum was 99.63 dB and the acquisition speed was 5.53 times that of the traditional method. As long as the quality of spectral recognition is ensured, this method can facilitate fast and lightweight acquisition of spectral information, which can technologically contribute to dynamic target measurement and rapid detection while improving the applicability of LCTF spectral imaging technology.
  • 图  1   观测模型的数学表达示意图

    Figure  1.   Schematic diagram of the observation model's mathematical representation

    图  2   观测模型的数学表达

    Figure  2.   The mathematical representation of the observation model

    图  3   高光谱数据采集平台及实验环境

    Figure  3.   Hyperspectral data acquisition platform and experimental environment

    图  4   高光谱平台采集特征图像

    Figure  4.   Feature image collected by hyperspectral platform

    图  5   DCT变换前后信号对比

    Figure  5.   Comparison of signals before and after DCT transform

    图  6   对比选择合适的重建分辨率和采样分辨率

    Figure  6.   Comparison and selection the appropriate reconstruction resolution and sampling resolution

    图  7   不同参数下的原始光谱与重建光谱对比

    Figure  7.   Comparison of original and reconstructed spectrum under different parameters

  • [1] 王捷, 周伟, 姚力波. 国外成像侦察技术现状及发展趋势[J]. 海军航空工程学院学报, 2012, 27(2): 199-204. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHK201202018.htm

    WANG Jie, ZHOU Wei, YAO Libo. The status and development trend of imaging reconnaissance technology abroad[J]. Journal of Naval Aeronautical Engineering Institute, 2012, 27(2): 199-204. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHK201202018.htm

    [2] 贺霖, 潘泉, 邸韡, 等. 高光谱图像目标检测研究进展[J]. 电子学报, 2009, 37(9): 2016-2024. DOI: 10.3321/j.issn:0372-2112.2009.09.024

    HE Lin, PAN Quan, DI Hua, et al. Research progress of target detection in hyperspectral images[J]. Electronic journals, 2009, 37(9): 2016-2024. DOI: 10.3321/j.issn:0372-2112.2009.09.024

    [3] 王建成, 朱猛. 高光谱侦察技术的发展[J]. 航天电子对抗, 2019, 35(3): 37-45. DOI: 10.3969/j.issn.1673-2421.2019.03.009

    WANG Jiancheng, ZHU Meng. The development of hyperspectral reconnaissance technology[J]. Aerospace Electronic Countermeasures, 2019, 35(3): 37-45. DOI: 10.3969/j.issn.1673-2421.2019.03.009

    [4] 张海丹. 基于高光谱成像系统的火焰三维温度场和烟黑浓度场重建研究[D]. 杭州: 浙江大学, 2016.

    ZHANG Haidan. Reconstruction of Flame Temperature Field and Smoke Concentration Field Based on Hyperspectral Imaging System[D]. Hang Zhou: Zhejiang University, 2016.

    [5] 刘逸飞. 基于光谱分析与深度信息的人脸活体检测[D]. 北京: 北京交通大学, 2017.

    LIU Yifei. Face in Vivo Detection Based on Spectral Analysis and Depth Information[D]. Beijing: Beijing Jiaotong University, 2017.

    [6] 朱思祁. 基于液晶滤波器件的高光谱显微成像系统设计及生物检测应用[D]. 广州: 暨南大学, 2015.

    ZHU Siqi. Design of Hyperspectral Microscopic Imaging System Based on Liquid Crystal Filter and Its Application in Biological Detection[D]. Guang Zhou: Jinan University, 2015.

    [7]

    Donoho D L. Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. DOI: 10.1109/TIT.2006.871582

    [8]

    Candès E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. DOI: 10.1109/TIT.2005.862083

    [9] 汪琪, 马灵玲, 李传荣, 等. 一种基于压缩感知理论的LCTF光谱超分辨方法[J]. 北京理工大学学报, 2018, 38(1): 40-45, 72. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201801007.htm

    WANG Qi, MA Lingling, LI Chuanrong, et al. LCTF Spectral Superresolution Method Based on Compressed Sensing Theory[J]. Journal of Beijing Institute of Technology, 2018, 38(1): 40-45, 72. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201801007.htm

    [10]

    Candès E, Wakin MB. An Introduction to Compressive Sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. DOI: 10.1109/MSP.2007.914731

    [11]

    Guimaraes DA, Floriano G, Chaves LS. A Tutorial on the Cvx System for Modeling and Solving Convex Optimization Problems (um Tutorial Sobre a Aplicao Do Cvx Na Soluo De Problem as De Otimizao Convexa)[J]. IEEE Latin America Transactions, 2015, 13(5): 1228-1257. DOI: 10.1109/TLA.2015.7111976

  • 期刊类型引用(7)

    1. 杜素忠,杨均流,贺小齐,梁新星. 铜电积车间槽面温度热成像智能检测预警方法. 化工自动化及仪表. 2021(01): 24-28+57 . 百度学术
    2. 钟鑫豪,龙永红,何震凯. 铜电解极板短路检测方法综述. 电子产品世界. 2021(04): 78-80 . 百度学术
    3. 刘金泉,罗明辉. 红外智能巡检机器人在铜电解过程中的应用. 铜业工程. 2021(01): 99-101 . 百度学术
    4. 杜素忠,梁新星,周飞舟,贺小齐,侯建硕,李新宇. 铜电积槽面电路故障智能监测系统的研究. 湿法冶金. 2020(01): 51-55 . 百度学术
    5. 刘齐,王茂军,高强,李晓明,石林. 基于红外成像技术的电气设备故障检测. 电测与仪表. 2019(10): 122-126+152 . 百度学术
    6. 张荣,刘小燕,武伟宁,鲁新月. 回转窑筒体热损失测量系统的研究. 电子测量与仪器学报. 2017(11): 1843-1848 . 百度学术
    7. 王一丁,马晓蕾,贺文强. 基于红外图像的铜电解短路检测. 北方工业大学学报. 2016(03): 1-7 . 百度学术

    其他类型引用(4)

图(7)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  177
  • PDF下载量:  36
  • 被引次数: 11
出版历程
  • 收稿日期:  2021-02-19
  • 修回日期:  2021-04-24
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回