航空发动机叶片表面红外测温校准及温度场重构

方弘毅, 罗捷, 王登奎, 杨建华, 曾敏, 邹远禄, 胡南滔, 杨志

方弘毅, 罗捷, 王登奎, 杨建华, 曾敏, 邹远禄, 胡南滔, 杨志. 航空发动机叶片表面红外测温校准及温度场重构[J]. 红外技术, 2024, 46(8): 940-946.
引用本文: 方弘毅, 罗捷, 王登奎, 杨建华, 曾敏, 邹远禄, 胡南滔, 杨志. 航空发动机叶片表面红外测温校准及温度场重构[J]. 红外技术, 2024, 46(8): 940-946.
FANG Hongyi, LUO Jie, WANG Dengkui, YANG Jianhua, ZENG Min, ZOU Yuanlu, HU Nantao, YANG Zhi. Infrared Temperature Measurement Calibration and Temperature Field Reconstruction of Aero-Engine Blade Surface[J]. Infrared Technology , 2024, 46(8): 940-946.
Citation: FANG Hongyi, LUO Jie, WANG Dengkui, YANG Jianhua, ZENG Min, ZOU Yuanlu, HU Nantao, YANG Zhi. Infrared Temperature Measurement Calibration and Temperature Field Reconstruction of Aero-Engine Blade Surface[J]. Infrared Technology , 2024, 46(8): 940-946.

航空发动机叶片表面红外测温校准及温度场重构

基金项目: 

中国航发四川燃气涡轮研究院外委课题 

四川省科技计划省院省校合作项目 2023YFSY0023

详细信息
    作者简介:

    方弘毅(1985-),男,陕西安康市人,高级工程师,主要从事航空发动机空气系统与热分析研究

    通讯作者:

    杨志(1976-),男,教授,博士生导师,主要从事纳米电子材料与器件研究。E-mail:zhiyang@sjtu.edu.cn

  • 中图分类号: V232.4

Infrared Temperature Measurement Calibration and Temperature Field Reconstruction of Aero-Engine Blade Surface

  • 摘要:

    随着我国航空业的蓬勃发展,航空发动机技术取得了长足的进步。作为航空发动机的关键组件,航空发动机叶片的研制关乎全局。对其温度进行实时、精确的测量监控有助于推动航空发动机叶片相关技术的突破。本文提出了一种基于红外测温技术的航空发动机叶片温度校准算法和温度场三维重构策略。该工作利用多层感知机网络的函数拟合能力,建立了对目标点精确温度与其周围温度分布的函数关系,并将红外测温的误差控制在1.24℃。在此基础上,采用投影法和三维点云法向量估计的创新策略,实现了二维红外图像到三维空间位置映射。该方法能从单视角红外图像得到温度场三维重构,重构过程简单,摆脱了对多视角图像的依赖。

    Abstract:

    With the vigorous development of the aviation industry in China, significant progress has been made in aeroengine technology. As key components of aeroengines, the development of aeroengine blades is crucial. Real-time and accurate monitoring of the blade temperature will help promote breakthroughs in related technologies for aeroengine blades. This study proposes a temperature calibration algorithm and three-dimensional reconstruction strategy for the temperature field based on infrared temperature measurements for aeroengine blade temperature monitoring. Based on the function fitting ability of the multilayer perceptron network, the functional relationship between the precise temperature of the target point and its surrounding temperature distribution is established, and the error of infrared temperature measurement is controlled within 1.24 ℃. On this basis, through an innovative projection method and 3D point cloud normal vector estimation, the position mapping from 2D infrared image to 3D space has been achieved. We achieved a three-dimensional temperature field reconstruction via single-view infrared images through a simple process without dependence on multiview images.

  • 图  1   添加噪声前后红外图像

    Figure  1.   Infrared images before and after adding noise

    图  2   温度校准流程图

    Figure  2.   Flow chart of temperature calibration

    图  3   MLP网络结构

    Figure  3.   MLP network structure

    图  4   叶片实物和叶片3D模型

    Figure  4.   Real image and 3D model of the aero-engine blade

    图  5   红外图像二值化和轮廓识别

    Figure  5.   Infrared image binarization and contour recognition

    图  6   三维温度场重建过程

    Figure  6.   Reconstruction process of 3D temperature field

    图  7   训练过程中模型的loss曲线

    Figure  7.   The loss curve of the model during the training process

    图  8   五个测试样本温度校准对比

    Figure  8.   Temperature calibration comparison of five test samples

    图  9   三维温度场重建

    Figure  9.   Reconstruction of 3D temperature field

    图  10   温度场重构样本误差

    Figure  10.   Error of samples in temperature field reconstruction

    表  1   样本平均温度误差E/mm

    Table  1   Average temperature error of test samples

    Test sample Average temperature error of sample/℃ Average value/℃
    1 1.0770 1.24
    2 1.8330
    3 0.9736
    4 0.9483
    5 1.3708
    下载: 导出CSV
  • [1] 胡承波. 中国航空制造业企业技术创新长效机制研究[D]. 武汉: 武汉理工大学, 2011.

    HU Chengbo. The Research on the Long-term Mechanism of Enterprise Technological Innovation in Aviation Manufacturing of China[D]. Wuhan: Wuhan University of Technology, 2011.

    [2] 王魁汉, 李友, 王柏忠. 温度测量技术的最新动态及特殊与实用测温技术[J]. 自动化仪表, 2001(8): 3-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB200108000.htm

    WANG Kuihan, LI You, WANG Baizhong. The latest development status of the technology of the temperature measurement and the unique and practical measurement technology[J]. Process Automation Instrumentation, 2001(8): 3-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB200108000.htm

    [3]

    YU Y B, CHOW W K. Review on an advanced high-temperature measurement technology: the optical fiber thermometry[J]. Journal of Thermodynamics, 2009(1): 823482.

    [4] 张志学, 刘忠奎, 张玉新, 等. 航空发动机壁温测量方法综述[C]// 2015航空试验测试技术学术交流会论文集, 2015: 139-142.

    ZHANG Zhixue, LIU Zhongkui, ZHANG Yuxin, et al. Survey on the wall temperature measurement of aeroengine[C]//Proceedings of the 2015 Aviation Test Technology Academic Exchange Conference, 2015: 139-142.

    [5] 唐文彬. 某型涡桨发动机燃烧室温度场热电偶动态响应规律的技术研究[D]. 南京: 南京航空航天大学, 2013.

    TANG Wenbin. Research on Dynamic Response Rule of Thermocouple for One Type of Turboprop Engines Combustor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.

    [6] 黄名海, 臧树升, 葛冰, 等. 热风洞中涡轮叶片温度场红外热像测量方法[J]. 航空动力学报, 2014, 29(11): 2679-2683. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201411019.htm

    HUANG Minghai, ZANG Shusheng, GE Bing, et al. Method of infrared thermography measurement for temperature field of turbine vane in hot wind tunnel[J]. Journal of Aerospace Power, 2014, 29(11): 2679-2683. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201411019.htm

    [7]

    CHRISTENSEN L, CELESTINA R, SPERLING S, et al. Infrared temperature measurements of the blade tip for a turbine operating at corrected engine conditions[J]. Turbomach, 2021, 143(10): 101005. DOI: 10.1115/1.4050675

    [8] 肖冬杰, 李其申, 周翠岭. 基于稀疏表示的自适应图像融合方法研究[J]. 计算机应用与软件, 2014, 31(3): 203-206. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201403054.htm

    XIAO Dongjie, LI Qishen, ZHOU Cuiling. Study on sparse representation based adaptive image fusion methods[J]. Computer Applications and Software, 2014, 31(3): 203-206. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201403054.htm

    [9] 刘兆栋. 基于稀疏表示理论的图像去噪与融合算法研究[D]. 重庆: 重庆大学, 2016.

    LIU Zhaodong. Research on Image Denoising and Fusion Based on Sparse Representation[D]. Chongqing: Chongqing University, 2016.

    [10] 胡建文. 基于多尺度滤波和稀疏表示的图像融合方法研究[D]. 长沙: 湖南大学, 2013.

    HU Jianwen. The Research on Image Fusion Based on Multiscale Filter and Sparse Representation[D]. Changsha: Hunan University, 2013.

    [11] 肖传民, 亓琳, 史泽林. 多尺度双边滤波及其在图像分割中的应用[J]. 信息与控制, 2009, 38(2): 229-233. DOI: 10.3969/j.issn.1002-0411.2009.02.018

    XIAO Chuanmin, QI Lin, SHI Zelin. Multi-scale bilateral filtering with application to image segmentation[J]. Information and Control, 2009, 38(2): 229-233. DOI: 10.3969/j.issn.1002-0411.2009.02.018

    [12] 王华伟. 基于红外热成像的温度场测量关键技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2013.

    WANG Huawei. Research on the Key Technologies of Temperature Field Measurement Based on Thermal Infrared Imager[D]. Xi'an: Xi'an Institute of Optics & Precision Mechnics, Chinese Academy of Sciences, 2013.

    [13] 李云红. 基于红外热像仪的温度测量技术及其应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    LI Yunhong. Research on Temperature Measurement Technology and Application Based on Infrared Thermal Imager[D]. Harbin: Harbin Institute of Technology, 2010.

    [14] 程胜. 人体三维远红外成像及其测温的研究[D]. 上海: 上海交通大学, 2009.

    CHENG Sheng. Three-Dimensional Far-infrared Thermal Imaging and Its Temperature Measurement for Medical Applications[D]. Shanghai: Shanghai Jiao Tong University, 2009.

    [15] 李勇. 基于红外测温的炉内温度场重构方法初步研究[D]. 北京: 华北电力大学, 2010.

    LI Yong. Research on Reconstruction Algorithm of Temperature Field Based on Infrared Radiation Measurement in Boiler[D]. Beijing: North China Electric Power University, 2010.

图(10)  /  表(1)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  13
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-27
  • 修回日期:  2023-01-09
  • 刊出日期:  2024-08-19

目录

    /

    返回文章
    返回