线激光扫描热成像无损检测参数仿真

王禄祥, 张志杰, 陈昊泽, 谭丹

王禄祥, 张志杰, 陈昊泽, 谭丹. 线激光扫描热成像无损检测参数仿真[J]. 红外技术, 2023, 45(10): 1038-1044.
引用本文: 王禄祥, 张志杰, 陈昊泽, 谭丹. 线激光扫描热成像无损检测参数仿真[J]. 红外技术, 2023, 45(10): 1038-1044.
WANG Luxiang, ZHANG Zhijie, CHEN Haoze, TAN Dan. Parameters Simulation in Line Laser Scanning Thermography Nondestructive Testing[J]. Infrared Technology , 2023, 45(10): 1038-1044.
Citation: WANG Luxiang, ZHANG Zhijie, CHEN Haoze, TAN Dan. Parameters Simulation in Line Laser Scanning Thermography Nondestructive Testing[J]. Infrared Technology , 2023, 45(10): 1038-1044.

线激光扫描热成像无损检测参数仿真

详细信息
    作者简介:

    王禄祥(1995-),男,河南上蔡人,硕士研究生,主要从事无损检测、信号处理和图像处理方面的研究。E-mail:wanglx16112@163.com

    通讯作者:

    张志杰(1965-),男,山西五台人,教授,博士生导师,主要从事动态测试理论与信号处理、动态误差及不确定度等方面的研究。E-mail:zhangzhijie@nuc.edu.cn

  • 中图分类号: TG115.28

Parameters Simulation in Line Laser Scanning Thermography Nondestructive Testing

  • 摘要: 线激光扫描热成像无损检测技术使用线形激光作为热激励源,采取扫描加热方式,在碳纤维复合材料无损检测方面具有独特优势。在分析线激光扫描红外热成像检测原理以及复合材料特点的基础上,提出了扫描方向、扫描速度、激光功率等3个可能影响检测效果的参数。建立线激光扫描检测复合材料的仿真模型,选取缺陷表面中心点和无缺陷处表面温度的最大温差作为检测效果的特征量,分析了上述参数对检测效果的影响,并对激光功率、扫描速度与检测效果之间关系进行了拟合,总结了实验时兼顾检测效率和检测效果的参数选取原则。
    Abstract: Line laser scanning thermography is a nondestructive testing technology that uses a line laser as a thermal excitation source and adopts a scanning heating method. It has unique advantages in the nondestructive testing of carbon fiber composites. Here, three parameters that may affect the detection, namely, scanning direction, scanning speed, and laser power, were identified by analyzing the line laser scanning thermography technique and characteristics of composite materials. A simulation model for the detection of composite materials using line laser scanning was established, and the maximum temperature difference between the center point of the defect surface and surface temperature of the defect-free area was selected as the characteristic quantity for detection. The influence of the above parameters on detection was analyzed, and the relationship between the laser power, scanning speed, and detection was fitted. Based on this, the principle of parameter selection considering detection efficiency during the experiment is summarized.
  • 图  1   线激光扫描检测原理

    Figure  1.   Diagram of line laser scanning detection

    图  2   Comsol仿真建模和网格划分结果

    Figure  2.   Simulation result and mesh result in Comsol

    图  3   缺陷示意图

    Figure  3.   Defect diagram

    图  4   仿真结果时序图

    Figure  4.   Time sequence diagram of simulation results

    图  5   不同扫描方向缺陷表面温度曲线

    Figure  5.   Defect surface temperature in different scanning directions

    图  6   不同扫描方向下缺陷表面温差

    Figure  6.   Defect surface temperature difference in different scanning directions

    图  7   不同激光功率下缺陷表面温度曲线

    Figure  7.   Defect surface temperature curves with different laser power

    图  8   不同激光功率下缺陷表面温差

    Figure  8.   Defect surface temperature difference with different laser power

    图  9   激光扫描功率与最大温差拟合图

    Figure  9.   Fitting curve of laser power and ΔTmax

    图  10   不同激光扫描速度下缺陷表面温度曲线

    Figure  10.   Defect surface temperature curves at different laser scanning speeds

    图  11   不同激光扫描速度下缺陷表面温差

    Figure  11.   Defect surface temperature difference at different laser scanning speeds

    图  12   激光扫描速度与最大温差拟合曲线

    Figure  12.   Fitting curve of laser scanning speeds and ΔTmax

    表  1   模型材料参数

    Table  1   Model material parameters

    Properties CFRP Air(25℃)
    Density ρ/(kg/m3) 1536 1.186
    Specific heat capacity c/[J/(kg·K)] 865 1005
    Thermal conductivity k/[W/(m·K)] 4.2(kx) 0.0261
    0.56(ky)
    0.56(kz)
    下载: 导出CSV

    表  2   激光扫描功率和最大温差数据

    Table  2   Data of laser scanning power and ΔTmax

    Laser scanning power /W Maximum temperature difference ΔTmax/℃
    Original value Normalized value (x) Original value Normalized value (y)
    10 0.3333 6.921 0.2991
    14 0.4667 9.916 0.4285
    20 0.6667 14.652 0.6332
    24 0.8 18.521 0.8004
    30 1 23.139 1
    下载: 导出CSV

    表  3   激光扫描速度和最大温差数据

    Table  3   Data of laser scanning speeds and ΔTmax

    Laser scanning speeds Maximum temperature difference ΔTmax
    Original value Normalized value x Original value Normalized value y
    5 0.1 14.652 1
    10 0.2 7.655 0.5225
    20 0.4 3.849 0.2627
    40 0.8 1.938 0.1323
    50 1 1.415 0.0966
    下载: 导出CSV
  • [1] 张晓虎, 孟宇, 张炜. 碳纤维增强复合材料技术发展现状及趋势[J]. 纤维复合材料, 2004(1): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-QWFC200401015.htm

    ZHANG Xiaohu, MENG Yu, ZHANG Wei. The state of the art and trend of carbon fiber reinforced composites[J]. Fiber Composite, 2004(1): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-QWFC200401015.htm

    [2] 杨乃斌, 梁伟. 大型民机机体结构用复合材料分析[J]. 航空制造技术, 2009(5): 68-70. DOI: 10.3969/j.issn.1671-833X.2009.05.013

    YANG Naibin, LIANG Wei. Analysis on composite material used on airframe structure of large civil aircraft[J]. Aeronautical Manufacturing Technology, 2009(5): 68-70. DOI: 10.3969/j.issn.1671-833X.2009.05.013

    [3] 王扬, 李科, 刘俊岩. CFRP复合材料层板缺陷的红外热波成像检测方法[J]. 航空制造技术, 2016(4): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201604008.htm

    WANG Yang, LI Ke, LIU Junyan. Nondestructive testing and evaluation(NDT & E) for CFRP laminate with subsurface defects using infrared thermal wave imaging[J]. Aeronautical Manufacturing Technology, 2016(4): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201604008.htm

    [4] 张富均, 戴宁, 王宏涛, 等. 相控阵超声CFRP缺陷三维成像研究[J]. 机械设计与制造工程, 2022(4): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZZ202204003.htm

    ZHANG Fujun, DAI Ning, WANG Hongtao, et al. Three-dimensional imaging of phased array ultrasonic CFRP defects[J]. Machine Design and Manufacturing Engineering, 2022(4): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZZ202204003.htm

    [5] 徐笑娟. 基于涡流法的碳纤维复合材料电磁建模、表征及损伤检测[D]. 南京: 南京航空航天大学, 2019.

    XU Xiaojuan. Electromagnetic Modeling, Characterizing and Damage Detection of Carbon Fiber Reinforced Polymer using Eddy Current Method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.

    [6] 杨玉娥, 闫天婷, 任保胜. 复合材料中碳纤维方向和弯曲缺陷的微波检测[J]. 航空材料学报, 2015(6): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201506015.htm

    YANG Yue, YAN Tianting, REN Baosheng. Microwave evaluation of direction and bending defect of carbon fiber in composite material[J]. Journal of Aeronautical Materials, 2015(6): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201506015.htm

    [7]

    Masashi Ishikawa, Masaki Ando, Masashi Koyama, et al. Active thermographic inspection of carbon fiber reinforced plastic laminates using laser scanning heating[J]. Composite Structures, 2019, 209: 515-522. DOI: 10.1016/j.compstruct.2018.10.113

    [8]

    Fariba Khodayar, Fernando Lopez, Clemente Ibarra, et al. Optimization of the inspection of large composite materials using robotized line scan thermography[J]. Nondestructive Eval, 2017, 36: 32-46.

    [9]

    Divyashree Nayaka, Vandana Rameshb, Augustin, et al. Laser scanning based methodology for on-line detection of inclusion in prepreg based composite aircraft manufacturing[J]. Materials Today: Proceedings, 2020, 24: 591-600.

    [10] 江海军, 陈力, 张淑仪. 激光扫描红外热波成像技术在无损检测中的应用[J]. 无损检测, 2014, 36(12): 20-22, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201412007.htm

    JIANG Haijun, CHEN Li, ZHANG Shuyi. Applications of laser scanning infrared thermography for nondestructive testing[J]. Nondestructive Testing, 2014, 36(12): 20-22, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201412007.htm

    [11] 汪权, 张志杰, 陈昊泽, 等. 线激光扫描的碳纤维复合材料表面损伤研究[J]. 激光与红外, 2022, 52(3): 458-464. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202203023.htm

    WANG Quan, ZHANG Zhijie, CHEN Haoze, et al. Study on surface damage of carbon fiber composites based on line laser scanning[J]. Laser & Infrared, 2022, 52(3): 458-464. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202203023.htm

    [12] 何志艺. 碳纤维复合材料联动扫描激光热成像缺陷检测技术研究[D]. 长沙: 湖南大学, 2021.

    HE Zhiyi. Research on Joint Scanning Laser Infrared Thermography Defect Detection Technology of Carbon Fiber Reinforced Polymer Material[D]. Changsha: Hunan University, 2021.

    [13]

    Raitsin A M. A new integral characteristic of the degree of difference of the spatial distribution of a laser beam from a Gaussian distribution[J]. Measurement Techniques, 2011, 54(2): 162-169.

    [14]

    LI T, Almond D P, Rees D a S. Crack imaging by scanning laser-line thermography and laser-spot thermography[J]. Measurement Science Technology, 2011, 22(3): 407-414.

    [15]

    Dodd C V, Pate J R, Deeds W E. Eddy-current inversion of flaw data from flat-bottomed holes[J]. NDT & E International, 1989, 30(3): 305-312.

图(12)  /  表(3)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  48
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-26
  • 修回日期:  2023-04-14
  • 刊出日期:  2023-10-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日