Abstract:
With lower underwater vehicle noise levels, the infrared imaging characteristics of underwater vehicle wake have become one of the main detectable sources. Using the infrared characteristics of underwater vehicle wakes to detect underwater vehicle traces has gradually developed into a popular detection method. Because of the low efficiency and inaccuracy of artificial wake characteristics identification, the adopted artificial intelligence deep learning method can be greatly improved. In this study, the infrared feature recognition of underwater vehicle wake is the primary focus. A sample set of mixed classes was made by image classification. The training effect of different pre-training networks was compared using migration learning. The influence of the internal parameters of the pre-training networks on the training effect of the wake was discussed. Finally, in the small sample set of 45 two kinds of wake, the recognition accuracy of the network after pre-training increased by 21.43%, the false detection rate decreased by 2.14%, and the positioning accuracy of the image with infrared characteristics was 18.18% higher than that of the visible image. This pre-training test has a certain application potential for future research on wake detection combined with convolution neural network recognition.