Stray Light Suppression of Coaxial Optical System for Space-Based Infrared Detection of Space Target
-
摘要:
空间目标天基红外探测系统在对近地轨道暗弱目标探测时,会受到来自视场外地球和大气的强烈杂散光的影响,因此,这类探测系统对杂散光抑制的要求非常高。本文围绕空间目标天基红外探测需求,在分析借鉴了国外一些天基红外探测系统的杂散光抑制技术的基础上,对用于空间目标天基红外探测的同轴光学系统的杂散光抑制技术进行了研究,提出通过在次镜背部添加中心遮光罩来进一步提升杂光抑制能力的技术途径。以SABER的同轴光学系统为例,对在次镜背部增加中心遮光罩前后的杂散光抑制能力进行了仿真,仿真结果表明在次镜背部增加中心遮光罩后,在临边探测方向上光学系统的PST明显降低,其中在离轴角5°和10°时分别降低了46%和35%。
Abstract:Space-based infrared detection systems for space targets are affected by strong stray light from the Earth and atmosphere outside the field of view when detecting faint targets in low Earth orbit. Therefore, such detection systems have high requirements for stray light suppression. Based on the requirements of space-based infrared detection for space targets, this study analyzes the stray light suppression technologies of several foreign space-based infrared detection systems, investigates the stray light suppression technology of coaxial optical systems used for space-based infrared detection of space targets, and proposes a technical approach to further improve stray light suppression by adding a center baffle to the back of the secondary mirror. Using SABER's coaxial optical system as an example, the stray light suppression capability was simulated before and after adding the center baffle. The simulation results show that, after adding the center baffle to the back of the secondary mirror, the point source transmittance (PST) of the optical system in the detection direction at the edge is significantly reduced by 46% and 35% when the off-axis angles are 5° and 10°, respectively.
-
-
-
[1] 王浩, 马文坡, 张倩, 等. 临边/深空背景探测系统地球杂散辐射建模分析[J]. 红外与激光工程, 2023, 52(10): 332-339. WANG Hao, MA Wenpo, ZHANG Qian, et al. Modeling and analysis of earth stray radiation of earthlimb/deep space background detection system[J]. Infrared and Laser Engineering, 2023, 52(10): 332-339.
[2] ZHOU D, WANG X. Stray light suppression of wide-field surveillance in complicated situations[J]. IEEE Access, 2023, 11: 2424-2432. DOI: 10.1109/ACCESS.2023.3234052
[3] 王虎, 陈钦芳, 马占鹏, 等. 杂散光抑制与评估技术发展与展望(特邀)[J]. 光子学报, 2022, 51(7): 125-180. WANG Hu, CHEN Qinfang, MA Zhanpeng, et al. Development and prospect of stray light suppression and evaluation technology (Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 125-180.
[4] 陆福星, 李夜金, 赵云峰, 等. 天基红外动目标检测系统的仿真和评估[J]. 红外技术, 2017, 39(5): 451-456, 462. http://hwjs.nvir.cn/article/id/hwjs201705011 LU Fuxing, LI Yejin, ZHAO Yunfeng, et al. Simulation and evaluation of space-based infrared moving target detection system[J]. Infrared Technology, 2017, 39(5): 451-456, 462. http://hwjs.nvir.cn/article/id/hwjs201705011
[5] 石栋梁, 肖琴, 练敏隆. "高分四号"卫星相机杂散光分析与抑制技术研究[J]. 航天返回与遥感, 2016, 37(5): 49-57. DOI: 10.3969/j.issn.1009-8518.2016.05.006 SHI Dongliang, XIAO Qin, LIAN Minlong. Research on stray light analysis and restrain of GF-4 satellite camera[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(5): 49-57. DOI: 10.3969/j.issn.1009-8518.2016.05.006
[6] O'Neil R R, Gibson J, Richards E. Midcourse space experiment: off-axis rejection performance of the infrared sensor[J]. Journal of Spacecraft and Rockets, 2006, 43(6): 1347-1358. DOI: 10.2514/1.19357
[7] Stair A T. MSX design parameters driven by targets and backgrounds[J]. Johns Hopkins Apl Technical Digest, 1996, 17(1): 11. http://deepblue.lib.umich.edu/bitstream/2027.42/76427/1/AIAA-1997-308-727.pdf
[8] Esplin R, Mlynczak M G, Russell J, et al. Sounding of the atmosphere using broadband emission radiometry (SABER): instrument and science measurement description[J]. Earth and Space Science, 2023, 10(9): e2023EA002999. DOI: 10.1029/2023EA002999
[9] Stauder J L, Esplin R W. Stray light design and analysis of the sounding of the atmosphere using broadband emission radiometry (SABER) telescope[C]//Infrared Spaceborne Remote Sensing VI, SPIE, 1998, 3437: 52-59.
[10] Wright E L. WISE: the wide-field infrared survey explorer[C]//Infrared Systems and Photoelectronic Technology IV, SPIE, 2009, 7419: 13-19.
[11] Mainzer A K, Eisenhardt P, Wright E L, et al. Update on the wide-field infrared survey explorer (WISE)[C]//Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter, SPIE, 2006, 6265: 661-672.
[12] 唐宏晨, 徐鹏, 阮宁娟, 等. 高超声速运动点目标检测[J]. 航天返回与遥感, 2018, 39(6): 46-54. DOI: 10.3969/j.issn.1009-8518.2018.06.006 TANG Hongchen, XU Peng, RUAN Ningjuan, et al. Detection of hypersonic moving point target[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(6): 46-54. DOI: 10.3969/j.issn.1009-8518.2018.06.006
[13] 曾天机, 唐义, 张丽君, 等. 基于合作目标的空间目标尺寸反演模型[J]. 航天返回与遥感, 2024, 45(2): 66-73. DOI: 10.3969/j.issn.1009-8518.2024.02.006 ZENG Tianji, TANG Yi, ZHANG Lijun, et al. Spatial target size inversion model based on cooperative targets[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(2): 66-73. DOI: 10.3969/j.issn.1009-8518.2024.02.006
[14] O'Neil R R, Gardiner H A, Gibson J J, et al. Midcourse space experiment (MSX): plans and capability for the measurement of infrared earthlimb and terrestrial backgrounds[C]//Characterization and Propagation of Sources and Backgrounds, SPIE, 1994, 2223: 264-273.
[15] Bartschi B Y, Morse D E, Woolston T L. The spatial infrared imaging telescope Ⅲ[J]. Johns Hopkins APL Technical Digest, 1996, 17(2): 215-225.
[16] Hall D F, Cranmer J H, Sanders Jr J T, et al. MSX spacecraft contamination control methodology and results[C]//Optical Systems Contamination and Degradation, SPIE, 1998, 3427: 4-15.
[17] Stauder J L, Esplin R W, Zollinger L, et al. Stray-light analysis of the SABER telescope[C]//Infrared Spaceborne Remote Sensing Ⅲ, SPIE, 1995, 2553: 264-270.
[18] 张梓扬, 常军, 黄一帆, 等. 基于强化学习的空间引力波探测望远镜系统外杂光抑制研究[J]. 光电工程, 2024, 51(2): 71-81. ZHANG Ziyang, CHANG Jun, HUANG Yifan, et al. Reinforcement learning-based stray light suppression study for space-based gravitational wave detection telescope system[J]. Opto-Electron Eng, 2024, 51(2): 71-81.
[19] 闫佩佩, 樊学武. R-C光学系统设计及杂散光分析[J]. 红外技术, 2011, 33(4): 214-218. DOI: 10.3969/j.issn.1001-8891.2011.04.007 YAN Peipei, FAN Xuewu. Optical design and stray light analysis of R-C system[J]. Infrared Technology, 2011, 33(4): 214-218. DOI: 10.3969/j.issn.1001-8891.2011.04.007
[20] 林剑春, 孙丽崴, 陈博洋, 等. 同轴两反光学系统杂散光分析及内遮光罩优化设计[J]. 中国激光, 2013, 40(1): 250-253. LIN Jianchun, SUN Liwei, CHEN Boyang, et al. Stray light analysis of a coaxial two reflect mirror system and optimized design of inner photomask[J]. Chinese Journal of Lasers, 2013, 40(1): 250-253.
[21] 舒政通, 韩赠崇, 吴羽婷, 等. 空间探测相机光学系统的杂散光分析和优化设计[J]. 应用光学, 2023, 44(5): 982-991. SHU Zhengtong, HAN Zengchong, WU Yuting, et al. Stray light analysis and optimization design for optical system of space detection camera[J]. Journal of Applied Optics, 2023, 44(5): 982-991.
[22] 殷恺, 钮新华, 张锷. 基于可见光红外扫描辐射计杂散光建模仿真[J]. 遥感学报, 2024, 28(3): 747-755. YIN Kai, NIU Xinhua, ZHANG E. Modeling and simulation of stray light based on the visible and infrared radiometer[J]. National Remote Sensing Bulletin, 2024, 28(3): 747-755.
-
期刊类型引用(2)
1. 方志浩,付志凯,王冠,张磊. 超大面阵碲镉汞探测器低应力设计及有限元分析. 红外. 2024(02): 9-17 . 百度学术
2. 刁云飞,张江风,张晓玲,孟庆端. 碲镉汞焦平面组件中硅减薄工艺与热应力计算. 激光与红外. 2021(09): 1191-1195 . 百度学术
其他类型引用(1)