Optimal Design of Dual-Band Off-Axis Three-Reflection Optical System Based on Free-form Surface
-
摘要: 在航空遥感领域中,双波段光学系统是最具代表性的光学系统。与单一波段光学系统相比,双波段系统可以同时探测到背景信号和目标信号,从而获得更准确的信息。采用离轴反射系统这一方案与折射系统相比,在满足更长焦距的同时,又能实现光学系统小型化的目标。本文提出一种基于自由曲面的反射系统作为设计蓝本,能够获得如下优点:视场角更大,光路容易折叠,系统成像质量高,能够达到高分辨率成像以及系统的轻量化设计。本文采用动态光学理论对系统初始结构进行求解并通过对系统元件的倾斜与偏移计算获得离轴系统,系统引入自由曲面获得更加优质的成像质量。系统参数如下:焦距为2000 mm,相对孔径为1/2,视场角为6°×1°,工作波段为3~5 μm与8~12 μm,选用法国Sofradir公司生产的红外双色焦平面阵列非制冷型探测器;设计结果表明,加入自由曲面后系统的成像质量得到了明显改善,系统在整个工作波段内MTF值在14 lp≥0.3。Abstract: In the field of aviation remote sensing, the two-band optical system is the most representative optical system. The dual-band system can detect both the background signal and the target signal to obtain more accurate information compared to a single-band system. Compared with the off-axial reflection system, the optical system is miniaturized while satisfying a longer focal length. Simultaneously, choosing the reflection system of a free surface as the blueprint of telefocal length system design has several advantages, including a large field of view angle, easy optical road folding, and a high system imaging quality, and can achieve high-resolution imaging and light weight design of the system. The system was added to the free-form surface for better image quality. The effective focal length of the system is 2000 mm, the relative aperture is 1/2, the field of view is 6°×1°, and the working bands are 3-5 μm and 8-2 μm. The selected model is the LA6110 non-refrigeration type detector. The design results show that the free-form surface can greatly improve the imaging quality of the system, and the modulation transfer function in the whole field of view can achieve a modulation transfer function greater than 0.3 at 14 lp/mm.
-
Key words:
- dual-bandsystem /
- dynamic optical theory /
- off-axis reflection /
- free-form surface /
- light weight design
-
表 1 Zernike多项式与像差关系
Table 1. Relationship between Zernike polynomials and primary aberrations
Number of terms Standard zenick multinomial Seidel aberration Z1 1 Parallel Z3 rcos(θ) Distortion-Tilt (x-axis) Z3 rsin(θ) Distortion-Tilt (x-axis) Z4 r2cos(2θ) Primary astigmatism (0° or 90° axis) Z5 2r2-1 Defocus-curvature of field Z6 r2sin(2θ) Primary astigmatism (±45° axis) Z7 r3cos(3θ) Primary clover (x-axis) Z8 cos(θ)(3r3-2r) Primary coma (x-axis) Z9 sin(θ)(3r3-2r) Primary coma (y-axis) 表 2 系统设计要求
Table 2. System design requirements
System parameters Relevant parameter Work band/μm 3-5,8-12 focal length/mm 2000 F-number 2 angle of field/° 6×1 Probe image element dimensions/μm 30×30 Modulation Transfer function requirements 14 lp≥0.3 表 3 基于动态光学理论计算的初始结构结果
Table 3. Details of the initial structure matrix calculation result
System parameters r1 r2 r3 d1 d2 l Parameter values -2130 -600 -1000 2100 -2105 1200 表 4 系统参数
Table 4. System parameters index
Mirror Surface type Radius/mm Thickness/mm Conic Primary mirror A spherical -2367.661 -1065.700 -0.821 Secondary mirror Zernike polynomial -639.103 1181.794 -5.285 Third mirror A spherical -1036.150 -1074.884 -0.119 表 5 次镜泽尼克自由曲面系数
Table 5. Zenike polynomial coefficients of secondary mirror
Item Coefficient Item Coefficient Item Coefficient Z1 -1.639 Z6 0.076 Z11 -0.205 Z2 -0.246 Z7 -0.271 Z12 -0.027 Z3 -0.241 Z8 -0.285 Z13 -0.013 Z4 -0.463 Z9 -0.155 Z14 0.046 Z5 -0.116 Z10 0.212 Z15 0.319 表 6 光学系统公差值
Table 6. Optical system tolerance value
Definition Tolerance value Definition Tolerance value radius of curvature ±2mm quadratic aspherical coefficients ±0.01 The surface is irregular ±0.1 Main mirror 4th aspherical coefficient ±1e-10 airspace ±2mm Main mirror 6th aspherical coefficient ±1e-16 Main mirror tilt ±0.01 Main mirror 8th aspherical coefficient ±1e-18 The main mirror eccentric ±0.5 Main mirror 10th aspherical coefficient ±1e-24 Sub-mirror tilt ±0.003 Three-mirror 4th nonspherical coefficient ±1e-9 The second mirror eccentric ±0.2 Three-mirror 6th aspheric coefficient ±1e-14 Third mirror tilt ±0.003 Three-mirror 8th aspheric coefficient ±1e-17 Third mirror eccentric ±0.2 Three-mirror 10th aspheric coefficient ±1e-23 -
[1] 赵秀丽. 红外光学系统设计[M]. 北京: 机械工业出版社, 1986: 3-4.ZHAO Xiuli. Design of Infrared Optical System[M]. Beijing: China Machine Press, 1986: 3-4. [2] TAO Guangming, Shabahang Soroush, REN He, et al. Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission[J]. Optics Letters, 2014, 39(13): 4009. doi: 10.1364/OL.39.004009 [3] 贾孟, 薛常喜. 基于Q-type非球面的双波段红外光学系统设计[J]. 光学学报, 2019, 39(10): 267-274. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201910032.htmJIA Meng, XUE Changxi. Design of dual and infrared optical system with q-type asphere[J]. Acta Optica Sinica, 2019, 39(10): 267-274. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201910032.htm [4] 陈建发, 潘枝峰, 王合龙, 等. 基于制冷型探测器的双波段红外光学系统无热化设计[J]. 电光与控制, 2019, 26(10): 83-86. doi: 10.3969/j.issn.1671-637X.2019.10.017CHEN Jianfa, PAN Zhifeng, WANG Helong, et al. Athermalization design of a dual-band infrared optical system with cryogenic detector[J]. Electronics Optics & Control, 2019, 26(10): 83-86. doi: 10.3969/j.issn.1671-637X.2019.10.017 [5] 王昊, 康福增, 赵卫, 等. 一种红外双波段衍射望远镜的光学设计[J]. 红外与毫米波学报, 2019, 38(1): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201901008.htmWANG Hao, KANG Fuzeng, ZHAO Wei, et al. An optical design for dual-band infrared diffractive telescope[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201901008.htm [6] 张欣婷, 安志勇. 双层谐衍射双波段红外消热差光学系统设计[J]. 光学学报, 2013, 33(6): 282-286. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201306041.htmZHANG Xinting, AN Zhiyong. Design of infrared athermal optical system for dual- and with double- ayer harmonic diffraction element[J]. Acta Optica Sinica, 2013, 33(6): 282-286. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201306041.htm [7] DA M, MI S, MENG M. Dual-band co-aperture infrared optical system design for irradiance measurement[C]// International Symposium on Optoelectronic Technology and Application 2014: Infrared Technology and Applications. International Society for Optics and Photonics, 2014: 930024. [8] 任志广, 李旭阳, 倪栋伟. 大相对孔径、大视场、紧凑型空间光学系统设计[J]. 光学学报, 2019, 39(9): 323-329. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201909038.htmREN Zhiguang, LI Xuyang, NI Dongwei. Compact space optical system design with lame relative aperture and field of view[J]. Acta Optica Sinica, 2019, 39(9): 323-329. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201909038.htm [9] 孟庆宇, 汪洪源, 王严, 等. 大线视场自由曲面离轴三反光学系统设计[J]. 红外与激光工程, 2016, 45(10): 1018002-1018002(8). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201610024.htmMENG Qingyu, WANG Hongyuan, WANG Yan, et al. Off-axis three-mirror freeform optical system with large linear field of view[J]. Infrared and Laser Engineering, 2016, 45(10): 1018002-1018002(8). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201610024.htm [10] 王志坚, 王鹏, 刘泉. 动态光学[M]. 北京: 国防工业出版社, 2015: 10-15.WANG Zhijian, WANG Peng, LIU Quan. Dymanic Optics[M]. Beijing: National Defense Industry Press, 2015: 10-15. [11] 陈丽, 刘莉, 赵知诚, 等. 长焦距同轴四反射镜光学系统设计[J]. 红外与激光工程, 2019, 48(1): 118002-0118002(10). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201901030.htmCHEN Li, LIU Li, ZHAO Zhicheng, et al. Design of coaxial four-mirror anastigmat optical system with long focal length[J]. Infrared and Laser Engineering, 2019, 48(1): 118002-0118002(10). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201901030.htm [12] 操超, 廖志远, 白瑜, 等. 基于矢量像差理论的离轴反射光学系统初始结构设计[J]. 物理学报, 2019, 68(13): 134-201. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201913012.htmCAO Chao, LIAO Zhiyuan, BAI Yu, et al. Initial configuration design of off-axis reflective optical system based on vector aberration theory[J]. Acta Phys. Sin. , 2019, 68(13): 134-201. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201913012.htm [13] 杨旭, 牟达, 陈炳旭, 等. 基于太赫兹波段的三反变焦系统设计[J]. 长春理工大学学报: 自然科学版, 2021, 44(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM202101001.htmYANG Xu, MOU Da, CHEN Bingxu, et al. Design of three based on reflective zoom system terahertz band[J]. Journal of Changchun University of Science and Technology: Natural Science Edition, 2021, 44(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM202101001.htm [14] Keith S Krause. Relative radiometric characterization and performance of the QuickBird high-resolution commercial imaging satellite[C/OL]// Proceedings of SPIE - The International Society for Optical Engineering, 2004, https://doi.org/10.1117/12.558949. [15] 姜宏佳. 大尺寸离轴反射式相机的仿真集成分析方法[J]. 航天返回与遥感, 2018, 39(1): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201801013.htmJIANG Hongjia. Detectability verification technology study in lab of instantaneous random point-source multi-target detecting camera on the geostationary orbit[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(1): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201801013.htm [16] Holland W, Macintosh M, Fairley A, et al. SCUBA-2: a 10, 000-pixel submillimeter camera for the James clerk maxwell telescope[J]. Millimeter & Submillimeter Detectors & Instrumentation for Astronomy III, 2006, 6275: 62751E. [17] 王文生. 应用光学[M]. 武汉: 华中科技大学出版社, 2010: 292-293.WANG Wensheng. Applied Optics[M]. Wuhan: Huazhong University of Science and Technology Press, 2010: 292-293. [18] 王之江. 实用光学技术手册[M]. 北京: 机械工业出版社, 2006: 400-402.WANG Zhijiang. Practical Optical Technical Manual[M]. Beijing: China Machine Press, 2006: 400-402. -