Research on Infrared Effective Detection Distance for Predicting Spontaneous Combustion of Goaf Residual Coal Based on Non-contact Mode
-
摘要: 采空区遗煤自燃是造成煤矿井下火灾事故的重要原因,受井下采空区实际情况限制,现有探测手段无法直接获得遗煤蓄热自燃的真实情况。本文利用红外热成像仪的非接触测温特点,通过测温原理分析、实验系统设计和搭建的手段,开展了贴近井下采空区真实环境的FOTRIC348红外热成像仪有效探测距离的测定实验,并进行了井下工程验证。结果表明,区域测温模式、线测温模式和点测温模式中FOTRIC348的有效探测距离分别为8~12 m、10~13 m和9~13 m;井下试验时FOTRIC348的有效探测距离为10~12 m;对上述探测距离取交集,综合判断FOTRIC348红外热成像仪在判断工作面两顺槽采空区遗煤蓄热自燃阶段的有效探测距离为10~12 m。该值的确定可为采空区遗煤自燃防治措施的实施提供针对性的决策依据。Abstract: The spontaneous combustion of residual coal in a goaf is a major cause of underground fire accidents in coal mines. Owing to the actual situation of underground goafs, existing detection methods cannot directly determine the true situation of residual coal thermal storage and spontaneous combustion. This study utilized the non-contact temperature measurement characteristics of the infrared thermal imager, and through the analysis of temperature measurement principles, experimental system design, and construction methods, conducts an experiment to measure the effective detection distance of the FOTRIC348 infrared thermal imager close to the real environment of the underground goaf, and verifies it in underground engineering. The results show that the effective detection distances of the FOTRIC348 in the regional, line, and point temperature measurement modes were 8 m to 12 m, 10 m to 13 m, and 9 m to 13 m, respectively. The effective detection distance of FOTRIC348 during underground testing was 10 m to 12 m. Based on the intersection of the above detection distances, the effective detection distance of the FOTRIC348 infrared thermal imager for determining the thermal storage and spontaneous combustion stage of residual coal in the goaf of the two parallel grooves of the working face is 10 m to 12 m. Determining this value can provide a targeted decision-making basis for implementing prevention and control measures for spontaneous coal combustion in the goaf.
-
-
图 4 不同探测距离的采空区煤自燃红外热成像预测效果实验系统
Figure 4. Experimental system for infrared thermal imaging prediction of coal spontaneous combustion in goaf with different detection distances
① Ambient temperature detector; ② Environmental wind speed and humidity detectors; ③ Power supply; ④ Power supply line for embedded constant temperature coal body heater; ⑤ T-shaped ruler; ⑥ Simulated goaf residual coal pile; ⑦ High temperature resistance test bench; ⑧ FOTRIC348 infrared thermal imager; ⑨ Movable sliding rod; ⑩ Concave movable slide rail; ⑪ Position card
图 9 采空区单滑轨深部红外探测系统示意图[13]
1. 操作手柄;2. FOTRIC348红外热成像仪;3. 中空金属架(内穿防爆控制线缆);4. 滑动卡具;5. 单滑轨道;6. 固位卡槽;7. 顶板垮落的夹杂遗煤的矸石
Figure 9. Schematic diagram of single slide rail deep infrared detection system in goaf
1. Operating handle; 2. FOTRIC348 infrared thermal imager; 3. Hollow metal frame (with explosion-proof control cables inside); 4. Sliding fixtures; 5. Single sliding track; 6. Fixed card slot; 7. Gangue mixed with coal residue due to roof collapse
表 1 煤样工业参数及筛分结果统计
Table 1 Statistics of industrial parameters and screening results of coal samples
Particle size/mm Moisture content/% Ash content/% Volatile/% Sulfur content/% Density/(g/cm3) Quality/g Uniformity >30 0.82 25.98 17.90 0.38 6.75 5300 even 20~30 3.50 5500 -
[1] 王月红, 杨华, 王苗苗, 等. 浸水煤自燃热分析实验与活化能分析[J]. 华北理工大学学报: 自然科学版, 2023, 45(2): 110-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HBLG202302014.htm WANG Yuehong, YANG Hua, WANG Miaomiao, et al. Thermal analysis experiment and activation energy analysis of submerged coal spontaneous combustion[J]. Journal of North China University of Science and Technology: Natural Science Edition, 2023, 45(2): 110-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HBLG202302014.htm
[2] 郭庆, 任万兴, 陆伟, 等. 回采工作面煤自燃气体演化规律及危险区域划分[J/OL]. 煤炭学报: 1-9. [2024-03-06]. http://kns.cnki.net/kcms/detail/11.2190.TD.20230331.1504.002.html. GUO Qing, REN Wanxing, LU Wei, et al. Spontaneous combustion gas evolution law and dangerous zone division of coal in stope face[J/OL]. Journal of China Coal Society, 1-9. [2024-03-06]. http://kns.cnki.net/kcms/detail/11.2190.TD.20230331.1504.002.html.
[3] 张广杰, 芦晓伟, 王文. 自燃煤层沿空留巷采空区遗煤自燃规律及防控技术研究[J]. 煤炭技术, 2023, 42(4): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202304023.htm ZHANG Guangjie, LU Xiaowei, WANG Wen. Study on law and prevention and control technology of goaf residual coal spontaneous combustion of gob-side entry retaining in combustible coal seam[J]. Coal Technology, 2023, 42(4): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202304023.htm
[4] 张天明, 杨胜强, 罗仁俊. "Y"型综采面新老采空区遗煤自燃氧化特点及瓦斯浓度分布规律[J]. 煤炭技术, 2023, 42(3): 178-181. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202303032.htm ZHANG Tianming, YANG Shengqiang, LUO Renjun. Spontaneous combustion and oxidation characteristics of coal relics in old and new mining areas of "Y" type comprehensive mining face and gas concentration distribution law[J]. Coal Technology, 2023, 42(3): 178-181. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202303032.htm
[5] 柳博聪. 采空区遗煤自燃过程氡析出规律实验模拟研究[D]. 包头: 内蒙古科技大学, 2022. LIU Bocong. Experimental Simulation on Radon Precipitation Law During Spontaneous Combustion of Coal in Goaf[D]. Baotou: Inner Mongolia University of Science & Technology, 2022.
[6] 张欣. 综放工作面采空区遗煤自燃防控研究[J]. 煤炭技术, 2021, 40(4): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202104031.htm ZHANG Xin. Study on prevention and control of coal spontaneous combustion in goaf of fully mechanized caving face[J]. Coal Technology, 2021, 40(4): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202104031.htm
[7] 谭波, 朱红青, 王海燕, 等. 巷道高冒封闭火区燃烧状态及表面温度场演变规律[J]. 中南大学学报: 自然科学版, 2014, 45(3): 946-951. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201403040.htm TAN Bo, ZHU Hongqing, WANG Haiyan, et al. Combustion state and surface temperature field evolution of closed firing zone in top-coal caving region of coal drift[J]. Journal of Central South University: Science and Technology, 2014, 45(3): 946-951. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201403040.htm
[8] 郑学召, 贾勇骁, 郭军, 等. 煤田火灾监测技术研究现状及展望[J]. 工矿自动化, 2019, 45(5): 6-10, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD201905002.htm ZHENG Xuezhao, JIA Yongxiao, GUO Jun, et al. Research status and prospect of coalfield fire monitoring technologies[J]. Journal of Mine Automation, 2019, 45(5): 6-10, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD201905002.htm
[9] 杨永辰, 米万升, 李奇贤, 等. 红外热成像仪在判断采空区自燃中的应用效果模拟研究[J]. 煤炭技术, 2017, 36(1): 147-150. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201701058.htm YANG Yongchen, MI Wansheng, LI Qixian, et al. Application effect simulation of infrared thermal imager in gudqing spontaneous combustion in goaf[J]. Coal Technology, 2017, 36(1): 147-150. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201701058.htm
[10] 杨永辰, 米万升, 曹少方, 等. 基于红外探测技术的巷道火源预测预报模拟研究[J]. 煤炭技术, 2018, 37(12): 124-126. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201812045.htm YANG Yongchen, MI Wansheng, CAO Shaofang, et al. Simulation research on prediction of roadway fire source based on infrared detection technology[J]. Coal Technology, 2018, 37(12): 124-126. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201812045.htm
[11] 秦汝祥, 陶远, 何宗礼, 等. 近巷煤体高温区域红外成像探测与分析[J]. 煤田地质与勘探, 2014, 42(4): 90-92. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201404022.htm QIN Ruxiang, TAO Yuan, HE Zongli, et al. Detection and analysis of high temperature area of coal near roadway by infrared thermal imaging[J]. Coal Geology & Exploration, 2014, 42(4): 90-92. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201404022.htm
[12] WEN Hu, MI W S, CHENG X J, et al. Experimental study on influencing factors of residual coal heat transfer in goaf based on infrared imaging[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(23): 13653-13664. DOI: 10.1007/s10973-022-11537-8.
[13] 米万升. 基于红外探测技术的巷道火源预测预报研究[D]. 邯郸: 河北工程大学, 2018. MI Wansheng. The Study of Forecast of Tunnel Fire Source Based on Infrared Detection Technology[D]. Handan: Hebei University of Engineering, 2018.
[14] 冯自宇, 孙昊, 张彦吉, 等. 大采高综采工作面采空区煤自燃危险区域研究与判定[J]. 煤炭技术, 2023, 42(4): 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202304031.htm FENG Ziyu, SUN Hao, ZHANG Yanji, et al. Research and judgment of coal spontaneous combustion dangerous area in goaf of fully mechanized mining face with large mining height[J]. Coal Technology, 2023, 42(4): 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202304031.htm
[15] 周旭, 朱毅, 张九零, 等. 基于PSO-XGBoost的煤自燃程度预测研究[J]. 矿业安全与环保, 2022, 49(6): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202206014.htm ZHOU Xu, ZHU Yi, ZHANG Jiuling, et al. Study on prediction model of coal spontaneous combustion based on PSO-XGBoost[J]. Mining Safety & Environmental Protection, 2022, 49(6): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202206014.htm
[16] 闫璟泓, 王方田, 张少华, 等. 高温采空区地热抽采方法及抽采效果控制因素研究[J]. 矿业安全与环保, 2022, 49(6): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202206015.htm YAN Jinghong, WANG Fangtian, ZHANG Shaohua, et al. Study on geothermal extraction method and control factors of extraction effect in high temperature goaf[J]. Mining Safety & Environmental Protection, 2022, 49(6): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202206015.htm
[17] 柳东明. 火成岩侵入易自燃煤层超长俯采工作面采空区自燃"三带"分布范围研究[J]. 矿业安全与环保, 2022, 49(4): 135-139. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202204018.htm LIU Dongming. Study on the distribution of "three zones"of spontaneous combustion in goaf of ultra-long downward working face with igneous rock intruding into coal seam prone to spontaneous combustion[J]. Mining Safety & Environmental Protection, 2022, 49(4): 135-139. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202204018.htm
[18] 杨富强, 范军富, 王兆峰, 等. 高家梁煤矿40101综采工作面采空区自燃"三带"分布规律研究[J]. 矿业安全与环保, 2022, 49(2): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202202017.htm YANG Fuqiang, FAN Junfu, WANG Zhaofeng, et al. Study on distribution law of "three zones" of spontaneous combustion in goaf of 40101 fully mechanized working face in Gaojialiang coal mine[J]. Mining Safety & Environmental Protection, 2022, 49(2): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202202017.htm
[19] 杨红运, 刘延保, 李勇, 等. 近距离煤层群切顶留巷覆岩应力及变形响应研究[J]. 矿业安全与环保, 2022, 49(1): 8-13, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202201002.htm YANG Hongyun, LIU Yanbao, LI Yong, et al. Study on strata stress and deformation response of contiquous seams under cutting roof for entry retaining[J]. Mining Safety & Environmental Protection, 2022, 49(1): 8-13, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER202201002.htm
-
期刊类型引用(0)
其他类型引用(1)