一种高精度船只目标光电定位系统设计与实现

李英杰, 李绍军, 蒋鹏, 卢嘉成, 陈力, 梁冬冬, 周磊

李英杰, 李绍军, 蒋鹏, 卢嘉成, 陈力, 梁冬冬, 周磊. 一种高精度船只目标光电定位系统设计与实现[J]. 红外技术, 2023, 45(10): 1090-1095.
引用本文: 李英杰, 李绍军, 蒋鹏, 卢嘉成, 陈力, 梁冬冬, 周磊. 一种高精度船只目标光电定位系统设计与实现[J]. 红外技术, 2023, 45(10): 1090-1095.
LI Yingjie, LI Shaojun, JIANG Peng, LU Jiacheng, CHEN Li, LIANG Dongdong, ZHOU Lei. Design and Implementation of a High-precision Ship Target Photoelectric Positioning System[J]. Infrared Technology , 2023, 45(10): 1090-1095.
Citation: LI Yingjie, LI Shaojun, JIANG Peng, LU Jiacheng, CHEN Li, LIANG Dongdong, ZHOU Lei. Design and Implementation of a High-precision Ship Target Photoelectric Positioning System[J]. Infrared Technology , 2023, 45(10): 1090-1095.

一种高精度船只目标光电定位系统设计与实现

详细信息
    作者简介:

    李英杰(1987-),男,博士,从事光电技术研究。E-mail:lsj_gdsf@163.com

    通讯作者:

    李绍军(1989-),男,硕士,从事云台伺服控制技术研究。E-mail:lsj_gdsf@163.com

  • 中图分类号: TN06

Design and Implementation of a High-precision Ship Target Photoelectric Positioning System

  • 摘要: 针对跨海桥梁或沿海机场等场所需要实时测算获取移动船只目标绝对位置和高程的现实需要,文中介绍一种高精度光电船只目标定位系统设计与实现方案。通过将高清高精度光学探测组件集成于高精度云台设备内部,可实时解算出目标点的绝对位置信息和高程信息并上报监控系统。结合雷达系统引导可实现无人值守情况下自动测算过往船只经纬度坐标及高程功能。经实际运行测试,该系统展现出良好的可靠性,具有较好的测量精度和应用前景。
    Abstract: Herein, the design and implementation of a high-precision photoelectric ship target positioning system is introduced to obtain the absolute position and elevation of a moving ship target for real-time measurements in places such as sea-crossing bridges or coastal airports. By integrating high-definition and high-precision optical detection components into the high-definition PTZ equipment, the absolute position and altitude information of the target point can be calculated in real time and reported to the monitoring system. Combined with the guidance of a radar system, it can automatically measure the longitude, latitude coordinates, and altitude of passing ships under unattended conditions. An actual operational test showed that the system had good reliability, measurement accuracy, and application prospects.
  • 图  1   目标定位系统示意

    Figure  1.   Target positioning system diagram

    图  2   目标位置信息解算流程

    Figure  2.   Target location information calculation process

    图  3   目标与云台坐标系关系

    Figure  3.   The relationship between the target and PTZ coordinate system

    图  4   目标与偏移后的云台坐标系关系

    Figure  4.   The relationship between the target and offset PTZ coordinate system

    图  5   云台伺服系统方案

    Figure  5.   PTZ servo system scheme

    图  6   速度环LADRC控制器结构

    Figure  6.   Speed loop LADRC controller structure

    图  7   速度环响应曲线对比

    Figure  7.   Comparison of speed loop response curves Angle/(°)

    图  8   位置环响应曲线对比

    Figure  8.   Comparison of position loop response curves

    图  9   系统工作流程

    Figure  9.   System workflow diagram

    表  1   电机和编码器参数

    Table  1   Motor and encoder parameter

    J180LWX005 motor Value EAC90F-0M21S encoder Value
    Rated torque/(N⋅m) 8 Resolution 21 bits
    Rated current/A 4 Accuracy < 30″
    No-load speed/rpm 110 Maximum speed/rpm 6000
    Torque coefficient/(N⋅m/A) 2
    Phase resistor/Ω 1.6
    Phase inductance/mH 4.5
    下载: 导出CSV

    表  2   目标经纬度测量对照

    Table  2   Target longitude and latitude measurement comparison

    Actual value of target longitude and latitude/° Measurement value of target longitude and latitude/° Distance/m Deviation/m
    Longitude: 118.7693622; Latitude: 31.87598539 Longitude: 118.7693379; Latitude: 31.8759465 2638 4.77
    Longitude: 118.7841865; Latitude: 31.896963 Longitude: 118.7841426; Latitude: 31.8969342 3825 4.86
    Longitude: 118.7775752; Latitude: 31.9166531 Longitude: 118.777571; Latitude: 31.9166863 6025 3.71
    Longitude: 118.86845383; Latitude: 31.89987727 Longitude: 118.868425; Latitude: 31.8998692 8224 2.84
    下载: 导出CSV

    表  3   目标高程测量对照

    Table  3   Target height measurement comparison

    Actual value of target height/m Measurement value/m Distance/m Deviation/m
    87.944 88.2 2638 0.256
    113.346 112.4 3825 -0.946
    116.26 115.2 6025 -1.06
    230.2 228.7 8224 -1.5
    下载: 导出CSV
  • [1] 张艳军. 通航桥梁对船撞击动力响应研究[J]. 铁道工程学报, 2016(10): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201610017.htm

    ZHANG Yanjun. Research on the dynamic response of isolated bridge to barge impact[J]. Journal of Railway Engineering Society, 2016(10): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201610017.htm

    [2] 张攀科. 水上跑道侵入风险演化机理及预警模型研究[D]. 武汉: 武汉理工大学, 2018.

    ZHANG Panke. Study on Evolution Mechanism and the Early Warning Model of Water Runway Incursion Risks[D]. Wuhan: Wuhan University of Technology, 2018.

    [3] 王丹, 董亚力. 桥区水域船舶安全控制高度测量系统设计[J]. 船舶科学技术, 2017, 39(11A): 34-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201722013.htm

    WANG Dan, DONG Yali. Design of height measurement system for ship navigation safety control in bridge area[J]. Ship Science and Technology, 2017, 39(11A): 34-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201722013.htm

    [4] 王冬华, 吴壮志. 海防监控系统中雷达引导功能的设计与实现[J]. 计算机工程与科学, 2008, 30(2): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJK200802015.htm

    WANG Donghua, WU Zhuangzhi. Design and implementation of the radar guidance in the coastal defense video surveillance systems[J]. Computer Engineering & Science, 2008, 30(2): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJK200802015.htm

    [5] 岳尚武, 季诚胜, 孙德新. 永磁同步电机伺服系统控制中的自抗扰控制策略[J]. 红外技术, 2020, 42(2): 121-126. http://hwjs.nvir.cn/article/id/hwjs202002003

    YUE Shangwu, JI Chengsheng, SUN Dexin. Auto disturbance rejection control strategy in servo system controlling with permanent magnet synchronous motor[J]. Infrared Technology, 2020, 42(2): 121-126. http://hwjs.nvir.cn/article/id/hwjs202002003

    [6] 朱斌. 自抗扰入门[M]. 北京: 北京航空航天大学出版社, 2017.

    ZHU Bin. Introduction to Automatic Disturbance Rejection Control[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2017.

    [7] 曾岳南, 周斌, 郑雷, 等. 永磁同步电机一阶线性自抗扰控制器的设计[J]. 控制工程, 2017, 24(9): 1818-1822. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF201709013.htm

    ZENG Yuenan, ZHOU Bin, ZHENG Lei, et al. Design of 1st-order linear active disturbance rejection controller for PMSMs[J]. Control Engineering of China, 2017, 24(9): 1818-1822. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF201709013.htm

  • 期刊类型引用(7)

    1. 杜素忠,杨均流,贺小齐,梁新星. 铜电积车间槽面温度热成像智能检测预警方法. 化工自动化及仪表. 2021(01): 24-28+57 . 百度学术
    2. 钟鑫豪,龙永红,何震凯. 铜电解极板短路检测方法综述. 电子产品世界. 2021(04): 78-80 . 百度学术
    3. 刘金泉,罗明辉. 红外智能巡检机器人在铜电解过程中的应用. 铜业工程. 2021(01): 99-101 . 百度学术
    4. 杜素忠,梁新星,周飞舟,贺小齐,侯建硕,李新宇. 铜电积槽面电路故障智能监测系统的研究. 湿法冶金. 2020(01): 51-55 . 百度学术
    5. 刘齐,王茂军,高强,李晓明,石林. 基于红外成像技术的电气设备故障检测. 电测与仪表. 2019(10): 122-126+152 . 百度学术
    6. 张荣,刘小燕,武伟宁,鲁新月. 回转窑筒体热损失测量系统的研究. 电子测量与仪器学报. 2017(11): 1843-1848 . 百度学术
    7. 王一丁,马晓蕾,贺文强. 基于红外图像的铜电解短路检测. 北方工业大学学报. 2016(03): 1-7 . 百度学术

    其他类型引用(4)

图(9)  /  表(3)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  46
  • PDF下载量:  45
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-09-02
  • 修回日期:  2022-09-24
  • 刊出日期:  2023-10-19

目录

    /

    返回文章
    返回