Abstract:
In this study, a semiconductor device was tested for high temperature storage at 90℃, 80℃ and 70℃, and the failure data is obtained. Based on the Weibull distribution model, parameter estimation was carried out by the least square method. The failure distribution function of the semiconductor device was obtained. And the classical reliability theory was applied to calculate the characteristic life, reliable life and MTBF of the product at 90℃, 80℃ and 70℃. Using the Arrhenius model, the storage characteristic life of the semiconductor device at room temperature was obtained, according to the storage characteristic life of 90℃, 80℃ and 70℃. The results show that the method is reasonable, simple and effective, and the results can be used to derive the normal temperature storage life.