高亮绿光氮化镓基Micro-LED微型显示器制备

张杰, 王光华, 邓枫, 杨文运, 高思博, 鲁朝宇, 孟泽阳, 高树雄, 常诚, 曹坤宇, 马赛江, 刘颖琪, 王丽琼

张杰, 王光华, 邓枫, 杨文运, 高思博, 鲁朝宇, 孟泽阳, 高树雄, 常诚, 曹坤宇, 马赛江, 刘颖琪, 王丽琼. 高亮绿光氮化镓基Micro-LED微型显示器制备[J]. 红外技术, 2024, 46(10): 1186-1191.
引用本文: 张杰, 王光华, 邓枫, 杨文运, 高思博, 鲁朝宇, 孟泽阳, 高树雄, 常诚, 曹坤宇, 马赛江, 刘颖琪, 王丽琼. 高亮绿光氮化镓基Micro-LED微型显示器制备[J]. 红外技术, 2024, 46(10): 1186-1191.
ZHANG Jie, WANG Guanghua, DENG Feng, YANG Wenyun, GAO Sibo, LU Chaoyu, MENG Zeyang, GAO Shuxiong, CHANG Cheng, CAO Kunyu, MA Saijiang, LIU Yingqi, WANG Liqiong. Fabrication of GaN-based Micro-LED Green Micro-display with High Brightness[J]. Infrared Technology , 2024, 46(10): 1186-1191.
Citation: ZHANG Jie, WANG Guanghua, DENG Feng, YANG Wenyun, GAO Sibo, LU Chaoyu, MENG Zeyang, GAO Shuxiong, CHANG Cheng, CAO Kunyu, MA Saijiang, LIU Yingqi, WANG Liqiong. Fabrication of GaN-based Micro-LED Green Micro-display with High Brightness[J]. Infrared Technology , 2024, 46(10): 1186-1191.

高亮绿光氮化镓基Micro-LED微型显示器制备

基金项目: 

云南省省市一体化重大科技专项 202202AH210001

云南省院士专家工作站 202205AF150076

详细信息
    作者简介:

    张杰(1986-)男,工程师,主要从事Micro-LED微显示器件研究。E-mail:zhangjie@oleid.com

    通讯作者:

    王光华(1984-),男,正高级工程师,博士,主要从事微显示器件与材料研究,E-mail:wangguanghua@oleid.com

  • 中图分类号: TN312

Fabrication of GaN-based Micro-LED Green Micro-display with High Brightness

  • 摘要:

    Micro-LED作为一种新型的显示技术,具有对比度高、响应快及寿命长等优点,已成为当前研究的热点。然而,尽管潜力巨大,Micro-LED技术的商业化之路仍面临诸多技术上的挑战与瓶颈。本文旨在探讨高亮绿光氮化镓基Micro-LED微型显示器的制备过程及其相关技术。基于WVGA041全数字信号电路CMOS硅基驱动电路,制作了0.41 inch、分辨率为800×480的主动式单色绿光Micro-LED微型显示器。利用高精度倒装焊接技术实现了CMOS驱动电路与LED发光芯片的电气连接。结果表明,制备出LED显示芯片正常启亮电压为2.8 V,EL光谱峰值波长524 nm;在硅基CMOS电路驱动范围内,Micro-LED微型显示器在5 V电压下,器件亮度为108000 cd/m2(最大亮度可达250000 cd/m2),电流密度达到0.61 A/cm2时色坐标为(0.175, 0.756)。当电流密度从0.3 A/cm2增加到1.3 A/cm2时,色坐标从(0.178, 0.757)变化到(0.175,0.746),器件的色稳定性能够满足实际应用要求。

    Abstract:

    Micro-LEDs are a new display technology with advantages including high contrast, fast response, and long lifetimes. Micro-LEDs are currently regarded as an active topic of research. Micro-LED display technology is a promising industry, but its commercialization faces many technical challenges and bottlenecks. This study explores the diode preparation process and related technologies for high-brightness, green-light, GaN-based micro-LED micro-displays. Monochrome green micro-LEDs with resolutions of 800×480 and 0.41 in were fabricated based on the CMOS driver circuit of an all-digital signal circuit. The CMOS driver circuit was connected to an LED chip via high-precision flip bonding. The experimental results showed that the turn-on voltage of the LED was 2.8 V and that the peak wavelength of the electroluminescence spectrum was 524 nm. The maximum brightness of the device can reach 250, 000 cd/m2 within the normal driving range of silicon-based CMOS circuits, and the brightness can reach 108, 000 cd/m2 at 5 V. When the current density was controlled at 0.61 A/cm2, the CIE coordinates were (0.175, 0.756). When the current density was increased from 0.3 A/cm2 to 1.3 A/cm2, the CIE coordinates changed from (0.178, 0.757) to (0.175, 0.746). The color stability of the device met the requirements for practical applications.

  • 近年来,随着红外制冷探测器朝尺寸小、重量轻、功耗低、成本低即低SWaP-C(size, weight and power, cost)方向快速发展,集成小型制冷机的该类中波红外探测器国外已大量应用于武器热瞄镜、便携式手持热像仪、小型无人机、无人车、遥控狙击手和遥控武器站、导弹导引头等空间受限的红外系统[1]。针对该类小型探测器设计一款仅由4片透镜组成的尺寸小、重量轻、成本低的中波红外连续变焦光学系统进而生产结构紧凑、低功耗和低成本的红外变焦热像仪将在手持观瞄具、边防监视系统、小型无人系统等平台得到广泛应用。

    目前采用四片式的红外变焦光学多为双视场变焦系统。文献[2]为四片式非制冷双视场,文献[3]为四片制冷型长波双视场系统,文献[4]为4片制冷型中波双视场系统,目前仅采用4片透镜实现连续变焦的制冷型红外光学系统未见报道。

    从变焦理论分析,一般常用的机械补偿变焦系统由典型的前固定组、变倍组、补偿组、后固定组4组透镜组成。变倍组一般是负透镜,而补偿组可以是正透镜组也可以是负透镜组,前者为正组补偿系统,后者称为负组补偿系统。从光学系统像差校正难易程度、减少透镜数量、降低光学透镜成本考虑,本文采用无后固定组正组补偿变焦系统,即变焦部分由会聚目标光线的前固定组正透镜、变倍负透镜、补偿正透镜构成。为压缩前固定组物镜口径并满足100%冷屏效率,系统采用二次成像方案,利用单片正光焦度透镜将一次像再次中继成像到探测器焦平面。为压缩轴向尺寸,采用二片平面反射镜将光路U型折转,最终实现仅由4片透镜构成的轻小型中波红外连续变焦光学系统。

    机械补偿连续变焦光学系统参数求解就是确定变焦系统在满足像面稳定和焦距在一定范围内连续变化的条件下系统中各组元的焦距、间隔、位移量等参数。通过建立数学模型能方便地计算和分析变焦过程、确定变焦系统高斯光学参数[5]。二组元正组补偿连续变焦系统运动方式如图 1所示。

    图  1  正组补偿光学系统变焦模型
    Figure  1.  Principle diagrams of continuous zoom optical system with mechanical compensation

    变焦系统由于只有运动组才产生像面位移,只需抽出变倍组、补偿组加以分析。

    因变倍组f2′的移动,引起整个运动组分的像面移动为m32(1-m22)dq,因补偿组f3′的移动,引起整个运动组分的像面移动为(1-m32)dΔ。为达到像面稳定,两个运动组像面移动量的代数和必为零。

    $$ m_3^2\left(1-m_2^2\right) \mathrm{d} q+\left(1-m_3^2\right) \mathrm{d} \varDelta=0$$ (1)

    而变倍组f2′、补偿组f3′微分移动量dq、dΔ与其倍率变化dm2、dm3之间的关系为:

    $$ \mathrm{d} q = \frac{{{f_2}'}}{{m_2^2}}\mathrm{d}{m_2} $$ (2)
    $$ \mathrm{d} \varDelta=f_3{ }^{\prime} \mathrm{d} m_3 $$ (3)

    将(2)、(3)代入(1),经整理得到二组元连续变焦微分方程如下:

    $$ \frac{{1 - m_2^2}}{{m_2^2}}{f_2}'\mathrm{d}{m_2} + \frac{{1 - m_3^2}}{{m_3^2}}{f_3}'\mathrm{d}{m_3} = 0 $$ (4)

    式(4)是多变量全微分型微分方程,设U(m2, m3)为原函数,则有dU(m2, m3)=0。

    其通解为:

    $$ U({m_2}, {m_3}) = {f_2}'(\frac{1}{{{m_2}}} + {m_2}) + {f_3}'(\frac{1}{{{m_3}}} + {m_3}) = C $$ (5)

    式中:C为常量;设变倍组f2′、补偿组f3′初始状态都处于系统长焦位置,则:

    $$ m_{2}=m_{2l}\text{;}m_{3}=m_{3l} $$ (6)

    同样有:

    $$ {f_2}'(\frac{1}{{{m_{2l}}}} + {m_{2l}}) + {f_3}'(\frac{1}{{{m_{3l}}}} + {m_{3l}}) = C $$ (7)

    消去常量C,得到方程的特解:

    $$ {f_2}'(\frac{1}{{{m_2}}} - \frac{1}{{{m_{2l}}}} + {m_2} - {m_{2l}}) + {f_3}'(\frac{1}{{{m_3}}} - \frac{1}{{{m_{3l}}}} + {m_3} - {m_{3l}}) = 0 $$ (8)

    将(8)式整理得到补偿组f3′的倍率m3构成的二次方程:

    $$ m_3^2 - b{m_3} + 1 = 0 $$ (9)

    其中

    $$ b = - \frac{{{f_2}'}}{{{f_3}'}}(\frac{1}{{{m_2}}} - \frac{1}{{{m_{2l}}}} + {m_2} - {m_{2l}}) + (\frac{1}{{{m_{3l}}}} + {m_{3l}}) $$ (10)

    解得m3的两根为:

    $$ {m_{31}} = \frac{{b + \sqrt {{b^2} - 4} }}{2} $$ (11)
    $$ {m_{32}} = \frac{{b - \sqrt {{b^2} - 4} }}{2} $$ (12)

    系统参数求解过程如下:

    1)将(2)式积分并整理得到变倍组f2′的倍率m2

    $$ {m_2} = \frac{1}{{\frac{1}{{{m_{2l}}}} + \frac{{{q_2}}}{{{f_2}'}}}} $$ (13)

    2)根据求得的m2按照公式(10)求出系数b,再由(11)、(12)式解得补偿组f3′满足运动方程的两个解m31m32

    3)根据补偿组的两个解求出满足运动方程补偿像面位移的移动量Δ1Δ2

    $$ \varDelta_{1}=f_{3}′(m_{31}-m_{3l})$$ (14)
    $$ \varDelta_{2}=f_{3}′(m_{32}-m_{3l}) $$ (15)

    4)求出系统的总变倍比

    $$ {\varGamma _1} = \frac{{{m_{2l}}{m_{3l}}}}{{{m_2}{m_{31}}}} $$ (16)
    $$ {\varGamma _2} = \frac{{{m_{2l}}{m_{3l}}}}{{{m_2}{m_{32}}}} $$ (17)

    变倍组f2′每移动q2对应着Γ1Γ2,变倍组和补偿组一起同步运动直到预定的总变倍比为止,到达变倍比的要求的最终状态为系统短焦位置。根据上述连续变焦微分模型,利用(10)~(17)式,可解得各组分光焦度分配及间隔位置关系。

    针对复杂的变焦光学系统,建立模型是至关重要的环节,尽管根据(10)~(17)式可推导求解变焦系统高斯参数,但是当光学系统初始参数选择不合适, 会使得系统光焦度分配不合理导致系统像差校正难度大、间隔不合适导致各组件运动中相互碰撞等情况发生。鉴于连续变焦系统的复杂性,系统建模难度大,因此根据连续变焦理论模型编制连续变焦参数计算程序,辅助建立理想光学模型。建模后,设计工作的重点将放在选型以及评价函数的设置和动态修改上,使得设计系统快速收敛[6]。连续变焦光学系统设计流程如图 2所示。

    图  2  光学设计流程
    Figure  2.  Optical design flow chart

    首先,根据设计指标要求需要建立理想光学模型,确定每个组元的参数;再合理选型选材、设定评价函数,进入优化和全局优化;最后根据设计结果评价成像质量。其中函数优化和像质评价环节反复多次迭代,直至达到设计技术指标要求。

    中波制冷型连续变焦光学系统采用昆明物理研究所研制生产的长度方向仅119 mm的小型化制冷型中波红外640×512焦平面探测器组件,该探测器具体参数如表 1所示。连续变焦光学系统主要设计指标见表 2

    表  1  探测器参数
    Table  1.  Parameters of detector
    Detector HgCdTe
    Array size 640×512
    Pixel dimension/μm 15
    NETD/mK ≤22
    Spectral response/μm 3.7−4.8 μm
    Weight ≤380 g
    下载: 导出CSV 
    | 显示表格
    表  2  光学系统设计指标
    Table  2.  Parameters of optical system design
    Working waveband/μm 3.7 to 4.8
    Zoom 10:01
    Field of view 20°×16° to 2.0°×1.6°
    F# 4
    Focal length/mm 27.0~275
    Working temperature/℃ -40 to 60
    下载: 导出CSV 
    | 显示表格

    首先,按照系统指标要求,根据连续变焦理论模型编制连续变焦正组补偿参数计算程序求解变焦光学系统各组元光焦度分配及位置间隔关系。在系统初始参数取值上主要考虑以下几点:

    1)系统采用二次成像,既可以压缩前固定组直径又可以满足100%冷屏效率。中继组初始倍率取为-1×,前端变焦核心按照系统实际变焦范围进行取值,无需缩放;

    2)系统无后固定组,在理论求解中将后固定组倍率取为1×即将后固定组定为无光焦度的虚拟面;

    3)为压缩系统变焦过程中变倍组、补偿组位移量,变倍组长焦初始倍率取较大的倍率值,以符合最速变焦理论;

    4)考虑光路U型折转,补偿组和中继组之间需较大的空间安置两片平面反射镜,则补偿组取较大的焦距值;

    5)系统处于短焦位置时前固定组与变倍组应留出足够的间隔,使两组透镜不至于相碰,初始值设为0.55,补偿组与无光焦度后固定组虚拟面距离初始设为0.55。

    利用计算程序,通过反复调整系统初始参数,观察组元间隔、光焦度分配是否合适,最终确定系统初始值为:

    $$ \begin{gathered} f_{2}′=-1、f_{3}′=1.62、m_{2l}=-1.45、\\m_{3l}=-1.34、d_{12d}=0.55、d_{34d}=0.55 \end{gathered} $$

    表 3为连续变焦光学系统参数简易计算程序按照上述初始值计算得到的5个视场位置的变焦间隔参数分配结果。

    表  3  变焦系统初始间隔参数
    Table  3.  Initial spacing parameters of optical system
    Focal length/mm 275 215 150 78.6 25.9
    f1/f2 spacing/mm 83.49 80.06 74.56 59.44 18.90
    f2/f3 spacing/mm 13.02 24.01 38.57 68.69 125.94
    f3/f4 spacing/mm 67.23 59.67 50.61 35.61 18.90
    下载: 导出CSV 
    | 显示表格

    其次,将上述程序计算的变焦光学系统各组元光焦度及间隔位置参数输入ZEMAX光学设计程序,得到系统近轴光学结构,如图 3所示。通过近轴光学结构分析,系统在各位置的焦距值与计算值吻合、总长一致、间隔布局合理、变焦曲线连续,验证程序计算结果正确,可进入下一步选型工作。

    图  3  近轴光学系统
    Figure  3.  Configuration of paraxial optical system

    再次,考虑各组元材料与调焦镜的选取,由于系统需满足-40℃~+60℃工作环境下成像清晰要求,按照光学系统无热化设计理论,系统的光焦度分配、材料选取、元件间隔都要满足光焦度、消色差、消热差3个方程[7]

    $$ \sum\limits_{i = 1}^j {{h_i}{\varphi _i}} = \varphi $$ (18)
    $$ {\left( {\frac{1}{{{h_1}\varphi }}} \right)^2}\sum\limits_{i = 1}^j {h_i^2{\varphi _i}{\theta _i}} = 0 $$ (19)
    $$ {\left( {\frac{1}{{{h_1}\varphi }}} \right)^2}\sum\limits_{i = 1}^j {h_i^2{\varphi _i}{\chi _i}} = \sum\limits_{i = 1}^j {{\alpha _i}{L_i}} $$ (20)

    式中:hiϕiθiχi分别为系统各透镜组近轴光线高度、光焦度、色差系数及热差系数;h1为第一透镜近轴光线高;ϕ为系统总光焦度;αi为各透镜间隔镜筒材料的线膨胀系数;Li为各间隔镜筒长度。

    该系统采用分步设计技术实现系统连续变焦无热化。首先选取满足上述(18)(19)公式的光焦度和材料分配,实现系统常温状态连续变焦成像清晰及高低温情况下离焦量的线性变化,系统光学材料主要选用硅单晶、锗单晶及硒化锌。其次利用主动补偿技术使系统满足(20)式要求,由于系统透镜数量少,变倍组、补偿组采用凸轮轨道变焦,中继组的轴向移动会产生变倍效果即系统视场焦距发生变化,因此采用前固定组轴向移动来进行主动调焦消热。通过上述无热化设计方法,光学系统在-40℃~+60℃温度范围内保持其性能基本不变。

    最后,设置多重结构,合理设计像差评价函数,不断调整优化。为提升连续变焦系统各视场成像清晰度要求,通过设置多个高次非球面和二元衍射面,以提供更多的自由度,有利于球差、色差、像散等各类像差的校正。

    轻小型中波红外连续变焦光学系统最终设计结果如图 4所示,从上到下依次为长焦275 mm、中焦100 mm、短焦27 mm的系统图。

    图  4  连续变焦光学系统
    Figure  4.  Configuration of continuous zoom optical system

    系统前固定组采用硅单晶材料用于会聚目标景物光线、压缩变倍组透镜尺寸;变倍组采用锗单晶材料,利用锗单晶高折射率、高色散的特性实现大倍率的变焦;补偿组采用硒化锌材料主要利用其较低的温度折射率系数使其在高低温工作环境只产生较小的离焦量以便实时补偿;中继组选择具有低的温度折射率系数、低色散的硅单晶材料平衡前端变焦核的残留色差。

    整个光学系统由4片透镜、两个平面反射镜组成,其中最大透镜为第一透镜其加工直径为71 mm,平面反射镜U型折转后光学系统轴向尺寸长度172 mm,横向尺寸宽度108 mm,光学零件总重量为64 g。该系统光学透镜数量少、重量轻,光路紧凑体积小,冷屏效率100%,适配小型化制冷探测器符合连续变焦光学系统轻小型设计理念。

    由于二元衍射面在消热差、消色差方面的优异特性,系统采用了两个二元衍射面用于减少透镜数量、简化系统设计、提高系统成像质量。

    在补偿组透镜硒化锌材料上引入的二元衍射面参数为Norm Radius=15 mm,A1=-33.416,A2=4.580。经计算得到二元衍射面环带深度随透镜径向的变化如图 5所示。硒化锌二元面环带数为4,最大环带深度2.918 μm,最小环带间隔宽度为2.06 mm。该面型环带间隔宽、加工环带数量少,易于单点金刚石车削加工。

    图  5  硒化锌基底二元面环带与半径的关系
    Figure  5.  Relationship between the ring depth and radius of the ZnSe binary optical element

    在中继组硅单晶材料引入的二元衍射面参数为Norm Radius=16 mm,A1=-60.402,A2=-1.254。其环带深度随透镜径向的变化如图 6所示。硅透镜二元面环带数为9,最大环带深度1.72 μm,最小环带间隔宽度为0.86 mm。该透镜由于材料硬、环带多相对加工难度大,目前昆明物理所光学中心采用单点金刚石车削加工工艺,能制造出满足指标要求的硅基底二元光学元件。

    图  6  硅基底二元面环带与半径的关系
    Figure  6.  Relationship between the ring depth and radius of the silicon binary optical element

    本文应用动态光学理论[8],根据像移补偿公式计算补偿组运动曲线。由于变焦组和补偿组均为沿光轴的一维移动,稳像方程为:

    $$ {\beta _{2m}}{\beta _2}(1 - {\beta _{1m}}{\beta _1}){q_1} + (1 - {\beta _{2m}}{\beta _2}){q_2} = 0 $$ (21)

    式中:β1为变倍组初始位置的垂轴放大率;β1m为变倍组运动后的垂轴放大率;β2为补偿组初始位置的垂轴放大率;β2m补偿组运动后的垂轴放大率;q1为变倍组沿光轴位移量;q2为补偿组沿光轴位移量。

    式中:

    $$ {\beta _{1m}} = \frac{{{\beta _1}{f_1}'}}{{{f_1}' - {\beta _1}{q_1}}} $$ (22)
    $$ {\beta _{2m}} = \frac{{{\beta _2}{f_2}'}}{{{f_2}' + (1 - {\beta _1}{\beta _{1m}}){\beta _2}{q_2} - {\beta _2}{q_2}}} $$ (23)

    由(21)式~(23)式可得出q1q2的运动关系,即:

    $$ Aq_{2}^{2}+Bq_{2}+C=0$$ (24)

    式中:

    $$ A=(f_{1}′-β_{1}q_{1})β_{2}\text{;} $$
    $$ \begin{align} B=&β_{1}β_{2}q_{1}^{2}+[f_{2}′(1-β_{2}^{2})β_{1}-f_{1}′(1-β_{1}^{2})β_{2}]q_{1}- \\&f_{1}′f_{2}′(1-β_{1}^{2}) \end{align}$$
    $$ C=β_{2}^{2}f_{2}′[β_{1}q_{1}-f_{1}′(1-β_{1}^{2})]q_{1} $$

    得到:

    $$ {q_2} = \frac{{ - B \pm \sqrt {{B^2} - 4AC} }}{{2A}} $$ (25)

    根据上述求解公式计算该变焦系统凸轮曲线如图 7所示。变倍组最大行程为28.6 mm、补偿组最大行程35 mm;补偿组曲线变化平滑,有利于凸轮轨道加工。

    图  7  连续变焦凸轮曲线
    Figure  7.  Cam curves of continuous zoom optical system

    系统3个焦距状态下的光学传递函数(MTF)如图 8所示。在3个焦距状态下的系统MTF满足使用要求,光学系统成像质量清晰。

    图  8  光学系统传函曲线
    Figure  8.  MTF curves of continuous zoom optical system

    系统3个焦距状态下的点列图如图 9所示。各视场RMS(root mean square)均小于一个像素,最大弥散斑RMS半径为12.6 μm,小于像元尺寸;最大弥散斑几何半径为24.5 μm,与系统艾里斑半径20.9 μm相当。系统成像质量良好,满足使用要求。

    图  9  光学系统点列图
    Figure  9.  Spot diagrams of continuous zoom optical system

    系统畸变情况如图 10所示,在长焦端小视场位置时,最大畸变量为1.2%,在短焦端大视场位置时的最大畸变量为2.4%,该变焦系统畸变对连续成像无明显影响。

    图  10  光学系统畸变
    Figure  10.  Optical distortion diagrams of continuous zoom optical system

    在高低温工作环境中,系统采用轴向移动前固定组进行主动调焦消热。系统长焦端受环境温度变化,成像质量影响较大,本文主要分析长焦275 mm在高低温下经补偿后的系统成像质量。图 11为系统在高低温下长焦经补偿后的系统调制传递函数。图 12为系统在高低温下长焦经补偿后的系统点列图。从高低温传函图及点列图中看出系统在-40℃~60℃范围内成像质量良好,满足使用要求。

    图  11  系统长焦时高低温下光学传递函数
    Figure  11.  MTF curves of continuous zoom optical system at high and low temperatures
    图  12  系统长焦时高低温下点列图
    Figure  12.  Spot diagrams of continuous zoom optical system at high and low temperatures

    基于小型化制冷中波640×512、像元间距15 μm的焦平面探测器,设计一款具有SWaP-C特征的正组补偿连续变焦光学系统。系统由4片透镜两片平面反射镜组成,F#为4、视场变化范围为20°×16°~2.0°×1.6°,变倍比为10×、U型折叠后系统包络尺寸为172 mm×108 mm、最大物镜口径71 mm、光学零件总重量64 g、零件加工工艺成熟,变焦凸轮曲线平滑,在-40℃~60℃范围内保持较好的成像质量。该轻小型中波红外连续变焦光学系统在导航、搜索、跟踪、警戒、侦察等领域具有广阔的市场前景。

  • 图  1   像素驱动单元电路原理图

    Figure  1.   Pixel driver circuit schematic

    图  2   WVGA041系统功能框图

    Figure  2.   WVGA041 function diagram

    图  3   像素排列图

    Figure  3.   Pixel arrangement diagram

    图  4   微显示器件的结构及制作流程

    Figure  4.   Micro-LED device structure and the fabrication process

    图  5   Micro-LED微显示像素阵列SEM图

    Figure  5.   The SEM image of Micro-LED pixel array

    图  6   器件启亮电压与电流-电压-亮度特性曲线

    Figure  6.   Characteristic curves of device turn-on voltage and I-V-L

    图  7   器件色坐标随电流密度变化曲线

    Figure  7.   The chromaticity of the green micro-LED device versus current density

    图  8   器件各电流下的EL光谱特性

    Figure  8.   Characteristic of EL spectra with different current value

    图  9   器件EQE随电流密度变化曲线

    Figure  9.   Normalized EQE as a function of current density

    图  10   Micro-LED微显示器件显示图片

    Figure  10.   Display image of micro-LED device

    表  1   显示器相关信息列表

    Table  1   Related parameters of the display diode

    Pixel size Duty cycle Display area size
    Width(W)/μm Height(H)/ μm 69.50% Width(W)/mm Height(H)/mm
    11.1 11.1 8.92 5.37
    下载: 导出CSV
  • [1]

    CHEN Z, YAN S, Danesh C. Micro LED technologies and applications: characteristics, fabrication, progress, and challenges[J]. Journal of Physics D: Applied Physics, 2021, 54(12): 123001. DOI: 10.1088/1361-6463/abcfe4

    [2]

    Wierer Jr J J, Tansu N. Ⅲ‐Nitride micro-LEDs for efficient emissive displays[J]. Laser & Photonics Reviews, 2019, 13(9): 1900141.

    [3]

    Chaji R, Fathi E, Zamani A. Essentials of MicroLED display production[C]//SID Symposium Digest of Technical Papers, 2020, 51(1): 323-327.

    [4]

    Behrman K, Kymissis I. Micro light-emitting diodes[J]. Nature Electronics, 2022, 5(9): 564-573. DOI: 10.1038/s41928-022-00828-5

    [5]

    MIAO W C, Hsiao F H, SHENG Y, et al. Microdisplays: mini-LED, micro-OLED, and micro‐LED[J]. Advanced Optical Materials, 2024, 12(7): 2300112. DOI: 10.1002/adom.202300112

    [6]

    Parbrook P J, Corbett B, Han J, et al. Micro-light emitting diode: from chips to applications[J]. Laser & Photonics Reviews, 2021, 15(5): 2000133.

    [7]

    Lee H E, Shin J H, Park J H, et al. Micro light-emitting diodes for display and flexible biomedical applications[J]. Advanced Functional Materials, 2019, 29(24): 1808075. DOI: 10.1002/adfm.201808075

    [8]

    ZHENG L, Zywietz U, Birr T, et al. UV-LED projection photolithography for high-resolution functional photonic components[J]. Microsystems & Nanoengineering, 2021, 7(1): 64.

    [9]

    LIN J Y, JIANG H X. Development of micro LED[J]. Applied Physics Letters, 2020, 116(10): 100502. DOI: 10.1063/1.5145201

    [10] 张启宇, 李大航, 李运飞, 等. 中国乘用车前照灯先进技术与发展趋势浅析[J]. 汽车实用技术, 2021, 46(12): 195-196, 199.

    ZHANG Q Y, LI D H, LI Y F, et al. Analysis on the advanced technology and development trend of Chinese passenger car headlamp[J]. Automobile Applied Technology, 2021, 46(12): 195-196, 199.

    [11] 冯思悦, 梁静秋, 梁中翥, 等. LED微阵列投影系统设计[J]. 中国光学, 2019, 12(1): 88-96.

    FENG S Y, LIANG J Q, LIANG Z Z. et al. Design of projection system for a micro-LED array[J]. Chinese Optics, 2019, 12(1): 88-96.

    [12]

    JIN S X, LI J, LI J Z, et al. GaN microdisk light emitting diodes[J]. Applied Physics Letters, 2000, 76(5): 631-633. DOI: 10.1063/1.125841

    [13]

    LIU Z J, CHONG W C, Wog K M, et al. 360 PPI flip-chip mounted active matrix addressable light emitting diode on silicon(LEDoS) micro-display[J]. Journal of Display Technology, 2013, 9(8): 678-682 DOI: 10.1109/JDT.2013.2256107

    [14]

    Day J, LI J, Lie D Y C, et al. Ⅲ-Nitride full-scale high-resolution micro displays[J]. Applied Physics Letters, 2011, 99(3): 031116 DOI: 10.1063/1.3615679

    [15]

    HUANG Y, TAN G, GOU F, et al. Prospects and challenges of mini-LED and micro-LED displays[J]. Journal of the Society for Information Display, 2019, 27(7): 387-401. DOI: 10.1002/jsid.760

    [16]

    Virey E H, Baron N, Bouhamri Z. Overlooked challenges for microLED displays[C]//SID Symposium Digest of Technical Papers, 2019, 50(1): 129-132.

    [17]

    LEE V W, Twu N, Kymissis I. Micro-LED technologies and applications[J]. Information Display, 2016, 32(6): 16-23. DOI: 10.1002/j.2637-496X.2016.tb00949.x

    [18]

    Constanze Großmann, Riehemann S, Notni G, et al. OLED-based pico-projection system[J]. Journal of the Society for Information Display, 2010, 18(10): 821-826. DOI: 10.1889/JSID18.10.821

图(10)  /  表(1)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  38
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-26
  • 修回日期:  2024-06-10
  • 刊出日期:  2024-10-19

目录

/

返回文章
返回
x 关闭 永久关闭

尊敬的专家、作者、读者:

端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

感谢您对本刊的支持!

《红外技术》编辑部

2024年6月6日