Fabrication of GaN-based Micro-LED Green Micro-display with High Brightness
-
摘要:
Micro-LED作为一种新型的显示技术,具有对比度高、响应快及寿命长等优点,已成为当前研究的热点。然而,尽管潜力巨大,Micro-LED技术的商业化之路仍面临诸多技术上的挑战与瓶颈。本文旨在探讨高亮绿光氮化镓基Micro-LED微型显示器的制备过程及其相关技术。基于WVGA041全数字信号电路CMOS硅基驱动电路,制作了0.41 inch、分辨率为800×480的主动式单色绿光Micro-LED微型显示器。利用高精度倒装焊接技术实现了CMOS驱动电路与LED发光芯片的电气连接。结果表明,制备出LED显示芯片正常启亮电压为2.8 V,EL光谱峰值波长524 nm;在硅基CMOS电路驱动范围内,Micro-LED微型显示器在5 V电压下,器件亮度为108000 cd/m2(最大亮度可达250000 cd/m2),电流密度达到0.61 A/cm2时色坐标为(0.175, 0.756)。当电流密度从0.3 A/cm2增加到1.3 A/cm2时,色坐标从(0.178, 0.757)变化到(0.175,0.746),器件的色稳定性能够满足实际应用要求。
-
关键词:
- micro-LED /
- 微型显示器 /
- 高亮单色绿光发光二级管
Abstract:Micro-LEDs are a new display technology with advantages including high contrast, fast response, and long lifetimes. Micro-LEDs are currently regarded as an active topic of research. Micro-LED display technology is a promising industry, but its commercialization faces many technical challenges and bottlenecks. This study explores the diode preparation process and related technologies for high-brightness, green-light, GaN-based micro-LED micro-displays. Monochrome green micro-LEDs with resolutions of 800×480 and 0.41 in were fabricated based on the CMOS driver circuit of an all-digital signal circuit. The CMOS driver circuit was connected to an LED chip via high-precision flip bonding. The experimental results showed that the turn-on voltage of the LED was 2.8 V and that the peak wavelength of the electroluminescence spectrum was 524 nm. The maximum brightness of the device can reach 250, 000 cd/m2 within the normal driving range of silicon-based CMOS circuits, and the brightness can reach 108, 000 cd/m2 at 5 V. When the current density was controlled at 0.61 A/cm2, the CIE coordinates were (0.175, 0.756). When the current density was increased from 0.3 A/cm2 to 1.3 A/cm2, the CIE coordinates changed from (0.178, 0.757) to (0.175, 0.746). The color stability of the device met the requirements for practical applications.
-
Keywords:
- micro-LED /
- micro-display /
- high brightness green emitting diode
-
0. 引言
微型发光二极管(micro light emitting device,Micro-LED)作为一种自发光显示器件,具有高亮度、高集成度、长寿命和低功耗等优点,较传统液晶显示(liquid crystal display,LCD)和有机发光二极管(organic light-emitting device,OLED)显示技术,Micro-LED在显示效果、能耗以及使用寿命等方面拥有显著的优势,被认为是最具潜力的新一代显示技术[1-4]。Micro-LED微型显示器像素尺寸小于10 μm,能够实现更高的分辨率和对比度,提供更清晰、细腻的画质体验,有助于构建更为紧凑高效的显示系统,在可穿戴设备、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)、微型投影仪、3D打印、汽车抬头显示以及可见光通讯等众多领域具有广泛的应用前景[5-11]。
随着技术的持续革新和市场的逐渐成熟,Micro-LED微型显示器技术研究和产业正展现出迅猛发展的势头。美国德州理工大学Hongxing Jiang团队2012年制备10×10阵列的Micro-LED器件,并实现其显示功能[12]。香港科技大学Keimay Lau团队2012年开发了360PPI的Micro LED显示原型机,并于2014年将显示器分辨率提升至1700PPI[13]。美国德克萨斯科学技术大学Day等人研制出超高分辨率的Micro-LED阵列,该器件由640×480个像素组成,Micro-LED阵列的台面尺寸为12 μm,像素间隔为3 μm[14]。然而,尽管前景广阔,Micro-LED微型显示技术的商业化和产业化道路仍充满挑战。技术难题、生产成本、市场接受度等问题,都亟待行业内外共同努力,以期实现显著的产业化突破[15-17]。本文基于云南北方奥雷德光电科技股份有限公司自主开发的WVGA041硅基IC驱动电路,将LED微显示芯片与IC电路进行互连,制备出了高亮单色绿光Micro-LED微型显示器件,显示器像素尺寸11.1 μm×11.1 μm,像素阵列800×480,并对器件性能进行了相应表征及研究。
1. 微型显示器件驱动及像素结构
1.1 微型显示驱动电路
像素驱动单元电路如图 1所示。LED采用电压驱动方式,视频信号Video_In在扫描信号ROWSEL和ROWSEL_B同时有效后,经P1、N1向储能电容C充电,同时控制N2的输出。储能电容C可保证在一帧/场周期内维持N2的输出。N2采用源极跟随器结构,控制5 V电源(Van)施加到阳极的电压。所有像素点的阴极连接到负电压Vcom,Vcom可通过寄存器进行调节,从而实现整个显示屏的亮度调整。N3用于对器件寄生电容实现快速放电,可在每次刷新数据前将残余电荷彻底放净,从而保证每次刷新的有效充电和显示。N3的放电设置可通过寄存器进行控制。
WVGA041系列产品的硅基板采用0.18 μm CMOS工艺制造,集成了全数字视频信号处理及804×3×484个驱动单元等电路。系统功能结构如图 2所示,其核心组成部分主要由数字视频信号接口、数字视频信号处理、测试图案发生器、数字伽马校正、灰度映射、D/A转换、行列扫描、像素驱动阵列、两线串行通信接口、3线SPI接口、可编程控制逻辑单元、温度传感器、DC/DC转换等功能模块组成。
数字视频信号接口具有3个8位数据通道,可接受8/16/24位的RGB或YCbCr视频信号。内部解码器根据不同的视频输入格式解码输出24位RGB信号;数字视频信号处理电路接收24位RGB信号后,对视频信号的亮度、对比度分别进行调整,并保持24位RGB信号输出;伽马校正电路对24位RGB信号进行查表校正后,扩展至30位RGB信号输出;灰度映射电路通过D/A转换,将30位RGB数字信号转换为三路模拟RGB亮度电平信号,再通过行列驱动扫描电路按扫描时序依次注入到各亚像素点驱动单元储存;驱动单元电路将RGB亮度电平信号施加到LED发光二极管阳极,并维持一帧/场周期时间。DC/DC模块通过外部提供的电源和PCB背板的外围元件,产生一个负电压(Vcom)施加到全部LED像素发光二极管的公共阴极,配合前述阳极亮度电平信号,使各LED像素在一帧/场的周期时间内持续发光。
1.2 微型显示芯片LED像素设计
自主研发的Micro-LED微型显示器采用倒装焊接工艺,将基于商用氮化镓LED外延制备的LED微显示芯片与公司自有白光OLED微型显示器驱动IC进行倒装焊互连。IC上的驱动像素单元按垂直列条状排列(如图 3所示),在OLED器件中,每个白光像素点由红、绿、蓝三个亚像素点构成。亚像素尺寸为2.8 μm×11.1 μm,间距0.9 μm。在LED器件中,在IC驱动像素上通过蒸镀金属将3个亚像素连接在一起,3个像素均传导相同电信号。发光像素尺寸为11.1 μm×11.1 μm,有效像素为800×480。每个像素的尺寸、发光面积与显示面积的占空比、显示区域尺寸如表 1所示。
表 1 显示器相关信息列表Table 1. Related parameters of the display diodePixel size Duty cycle Display area size Width(W)/μm Height(H)/ μm 69.50% Width(W)/mm Height(H)/mm 11.1 11.1 8.92 5.37 2. 器件制备
器件制备借助MEMS工艺平台,综合CMOS电路结构及工艺需求,使用2 inch绿光蓝宝石衬底GaN基LED外延制备Micro-LED显示芯片。主要工艺流程如图 4所示,首先对LED外延片进行P面金属光刻工艺,蒸镀P面金属,并将冗余金属区域通过剥离工艺,制备P型欧姆接触电极;之后进行光刻,制备像素阵列,使用ICP干法刻蚀设备定义出显示像素阵列;然后沉积二氧化硅薄膜作为显示像素侧壁钝化层,并进行钝化层光刻,使用ICP设备对P型接触电极上方的钝化膜刻蚀掉,打开欧姆接触孔;然后,进行N面金属光刻工艺,蒸镀N型欧姆接触电极,形成共阴极。
Micro-LED显示芯片工艺完成后,使用刀轮对2 inch片切割,分立成具备完整显示功能的0.41 inch小片。之后,使用倒装焊接设备,将Micro-LED显示芯片与驱动电路键合到一起。最后,采用打线封装工艺,将倒焊好的器件与PCB电路板贴片连接。器件的亮度及光谱由PR-655光度计测量,电流和电压通过Keithley2400测试仪所组成的测试系统测量,外量子效率由远方光电PCE-2000B积分球测量。
3. 结果和讨论
图 5为Micro-LED芯片像素阵列扫描电子显微镜(scanning electron microscope,SEM)图,由图可知,像素为正方形,像素尺寸为11.1 μm×11.1 μm,相邻两像素间距为0.9 μm,与实验设计一致,分辨率为800×480。
在实验中,由于采用的驱动IC专为OLED微型显示器设计,其输出电流较低,尽管足够点亮氮化镓基Micro-LED器件,但未能完全展现Micro-LED在大电流工作状态下所能达到的高亮度效果。为了更好地评估器件的性能,我们采用两点测试法,在CMOS驱动的N2衬底(如图 1所示)施加正向电压,Vcom端接地,通过外接电源替代驱动IC供电,模拟大电流驱动环境点亮整个显示屏,以获取该显示屏在大电流驱动下的测试数据,从而更深入地研究其光电特性。
图 6为器件的电流-电压-亮度特性曲线。如图 6(a)所示,启亮电压仅为2.8 V,低启亮电压意味着器件具备更短的响应时间,这一特性对于需要高刷新率的应用场景尤为重要。此外,低启亮电压还有助于提升器件的稳定性和延长其使用寿命。如图(b)所示电压为4 V时,电流162 mA,器件亮度为42855 cd/m2,电压为5.0 V,电流294 mA,亮度为108000 cd/m2。电压为7.5 V,电流607 mA,亮度为251000 cd/m2。有研究显示,OLED微型显示器在3.4 V驱动电压下,器件发光亮度为10000 cd/m2左右[18]。与OLED相比,该显示屏拥有极高的亮度,这得益于其单个LED的高效能转换,使得在明亮环境中仍能保持出色的可视性。
图 7为器件色坐标随电流密度的变化曲线,可以看出,电流密度从0.3 A/cm2增加到1.3 A/cm2时,色坐标从(0.178, 0.757)变化到(0.175, 0.746),CIE-X坐标变化范围0.171~0.179,变化幅度小于0.010,CIE-Y坐标变化范围0.745~0.758,变化幅度小于0.015。随着电流密度的提高,器件的CIE-X和CIE-Y值呈现出相对稳定的变化趋势,这对于高亮显示应用十分重要。
图 8展示了器件在不同电流下的电致发光(EL)光谱。其中图 8(a)为原始光谱图。可以看出,随着电流的增加,光强呈现出显著的增强趋势。图 8(b)为图 8(a)的归一化光谱图,可以看出,尽管电流变化,但器件的峰值波长稳定在524 nm,且半峰宽为28 nm,呈现出较为集中的发光特性。将其峰值部分放大,其结果展示在图 8(b)的插图中,波峰的位置在电流变化的过程中几乎保持不变,这表明器件在发光过程中具有出色的稳定性,即使在电流变化的情况下,光谱也并未发生明显的偏移,体现了器件优良的光电性能和可靠的发光机制。
图 9展示了器件的外量子效率(external quantum efficiency,EQE)随电流密度的变化曲线,EQE值随电流密度增大,先增后减。在电流密度较低时,随着电流的增加,载流子填充缺陷,SRH复合得到抑制,EQE值上升。当电流密度攀升到1.67 A/cm2左右,EQE达到最高点,之后电流增大,EQE值下降。这是因为大电流注入下,载流子泄露造成的俄歇复合加剧,影响了器件效率。此外,大电流下的热效应同样会加剧EQE下降,限制了光电转换效率的进一步提升。
通过倒装焊工艺,成功开发了绿光Micro-LED微型显示器件,实现了驱动芯片对单个LED的独立控制,并能完成视频信号输入后的画面显示(如图 10),并具备亮度、对比度、伽马校正等功能的控制和调整。
4. 总结
制备了一款0.41 inch、分辨率为800×480的氮化镓基单色绿光Micro-LED微型显示器,利用高精度焊技术实现CMOS驱动电路与LED发光芯片的电气连接,实现了视频画面显示,并研究其光电特性。实验结果表明,在CMOS电路驱动范围内,器件最大亮度可达250000 cd/m2,其启亮电压2.8 V,能够满足高亮度的应用需求。电流密度从0.3 A/cm2增加到1.3 A/cm2时,色坐标从(0.178,0.757)变化到(0.175, 0.746),区间内CIE-X坐标变化范围0.171~0.179,CIE-Y坐标变化范围0.745~0.758,器件的色稳定性能够满足实际应用要求。制备的单色绿光micro-LED微型显示器具备高亮度、低启亮电压和良好色稳定性等特性,为虚拟现实(VR)、增强现实(AR)、可穿戴设备、智能眼镜、医疗影像和军事领域等提供了理想的显示解决方案,研究的成果具有显著的优势和广阔的应用前景。
-
表 1 显示器相关信息列表
Table 1 Related parameters of the display diode
Pixel size Duty cycle Display area size Width(W)/μm Height(H)/ μm 69.50% Width(W)/mm Height(H)/mm 11.1 11.1 8.92 5.37 -
[1] CHEN Z, YAN S, Danesh C. Micro LED technologies and applications: characteristics, fabrication, progress, and challenges[J]. Journal of Physics D: Applied Physics, 2021, 54(12): 123001. DOI: 10.1088/1361-6463/abcfe4
[2] Wierer Jr J J, Tansu N. Ⅲ‐Nitride micro-LEDs for efficient emissive displays[J]. Laser & Photonics Reviews, 2019, 13(9): 1900141.
[3] Chaji R, Fathi E, Zamani A. Essentials of MicroLED display production[C]//SID Symposium Digest of Technical Papers, 2020, 51(1): 323-327.
[4] Behrman K, Kymissis I. Micro light-emitting diodes[J]. Nature Electronics, 2022, 5(9): 564-573. DOI: 10.1038/s41928-022-00828-5
[5] MIAO W C, Hsiao F H, SHENG Y, et al. Microdisplays: mini-LED, micro-OLED, and micro‐LED[J]. Advanced Optical Materials, 2024, 12(7): 2300112. DOI: 10.1002/adom.202300112
[6] Parbrook P J, Corbett B, Han J, et al. Micro-light emitting diode: from chips to applications[J]. Laser & Photonics Reviews, 2021, 15(5): 2000133.
[7] Lee H E, Shin J H, Park J H, et al. Micro light-emitting diodes for display and flexible biomedical applications[J]. Advanced Functional Materials, 2019, 29(24): 1808075. DOI: 10.1002/adfm.201808075
[8] ZHENG L, Zywietz U, Birr T, et al. UV-LED projection photolithography for high-resolution functional photonic components[J]. Microsystems & Nanoengineering, 2021, 7(1): 64.
[9] LIN J Y, JIANG H X. Development of micro LED[J]. Applied Physics Letters, 2020, 116(10): 100502. DOI: 10.1063/1.5145201
[10] 张启宇, 李大航, 李运飞, 等. 中国乘用车前照灯先进技术与发展趋势浅析[J]. 汽车实用技术, 2021, 46(12): 195-196, 199. ZHANG Q Y, LI D H, LI Y F, et al. Analysis on the advanced technology and development trend of Chinese passenger car headlamp[J]. Automobile Applied Technology, 2021, 46(12): 195-196, 199.
[11] 冯思悦, 梁静秋, 梁中翥, 等. LED微阵列投影系统设计[J]. 中国光学, 2019, 12(1): 88-96. FENG S Y, LIANG J Q, LIANG Z Z. et al. Design of projection system for a micro-LED array[J]. Chinese Optics, 2019, 12(1): 88-96.
[12] JIN S X, LI J, LI J Z, et al. GaN microdisk light emitting diodes[J]. Applied Physics Letters, 2000, 76(5): 631-633. DOI: 10.1063/1.125841
[13] LIU Z J, CHONG W C, Wog K M, et al. 360 PPI flip-chip mounted active matrix addressable light emitting diode on silicon(LEDoS) micro-display[J]. Journal of Display Technology, 2013, 9(8): 678-682 DOI: 10.1109/JDT.2013.2256107
[14] Day J, LI J, Lie D Y C, et al. Ⅲ-Nitride full-scale high-resolution micro displays[J]. Applied Physics Letters, 2011, 99(3): 031116 DOI: 10.1063/1.3615679
[15] HUANG Y, TAN G, GOU F, et al. Prospects and challenges of mini-LED and micro-LED displays[J]. Journal of the Society for Information Display, 2019, 27(7): 387-401. DOI: 10.1002/jsid.760
[16] Virey E H, Baron N, Bouhamri Z. Overlooked challenges for microLED displays[C]//SID Symposium Digest of Technical Papers, 2019, 50(1): 129-132.
[17] LEE V W, Twu N, Kymissis I. Micro-LED technologies and applications[J]. Information Display, 2016, 32(6): 16-23. DOI: 10.1002/j.2637-496X.2016.tb00949.x
[18] Constanze Großmann, Riehemann S, Notni G, et al. OLED-based pico-projection system[J]. Journal of the Society for Information Display, 2010, 18(10): 821-826. DOI: 10.1889/JSID18.10.821